

Kulcher Pty Ltd

Concord West Precinct Transport Plan

March 2021

ENGINEERING PLANNING PROJECT MANAGEMENT SURVEYING CERTIFICATION

Item 3 - Attachment F - Transport Plan

brs.com.au

© Copyright Barker Ryan Stewart Pty Ltd 2021 All Rights Reserved

Project No.	SY160252
Author	EA/AJ
Checked	GB
Approved	GB

Rev No.	Status	Date	Comments
1	Draft	11/09/2018	
2	Draft	17/09/2020	Revised Sidra modelling
3	Draft	2/03/2021	Sidra modelling updated Parking Assessment added
4	Final	30/03/2021	Parking Assessment added

COPYRIGHT

Barker Ryan Stewart reserves all copyright of intellectual property in any or all of Barker Ryan Stewart's documents. No permission, licence or authority is granted by Barker Ryan Stewart to any person or organisation to use any of Barker Ryan Stewart's documents for any purpose without the written consent of Barker Ryan Stewart.

REPORT DISCLAIMER

This report has been prepared for the client identified in section 1.0 only and cannot be relied on or used by any third party. Any representation, statement, opinion or advice, expressed or implied in this report is made in good faith but on the basis that Barker Ryan Stewart are not liable (whether by reason of negligence, lack of care or otherwise) to any person for any damage or loss whatsoever which has occurred or may occur in relation to that person taking or not taking (as the case may be) action in any respect of any representation, statement, or advice referred to above.

SYDNEY Suite 603, Level 6, 12 Century Circuit Norwest Business Park NSW 2153 **P** (02) 9659 0005 **F** (02) 9659 0006 **E** sydney(@brs.com.au CENTRAL COAST Studio 5, 78 York Street East Gosford NSW 2250 P (02) 4325 5255 E coast@brs.com.au HUNTER

Unit 1, 17 Babilla Close Beresfield NSW 2322 P (02) 4966 8388 F (02) 4966 1399 E hunter@brs.com.au

TABLE OF CONTENTS

1	Executive Summary	4
2	Introduction	5
3	Concord West Transport and Access Strategy	7
3.	 Concord West Transport Report (by GTA) 	9
3.	3 Strategic Review of the Canada Bay Bike Plan	.10
3.	4 Sydney West Metro	.11
3. 3	 Fastern City District Plan 	.12
3.	 Greater Sydney Region Plan – A Metropolis of 3 Cities 	.12
3.	8 Australian Bureau of Statistics – Concord Census Data	.13
4	Existing Public/Active Transport Options	.14
5	Proposed Sustainable Transport Initiatives	.16
5.	1 Introduction	.16
5.	 3 Public Transport Opal Card 	.16
5.	4 Car Share System	.17
5.	5 Pedestrians and Cyclists	.18
6	Parking Assessment	.20
7	Existing Traffic Conditions	.23
7. 7	 Site Location	.23
7.	3 Existing Traffic Volumes	.24
7.	4 Existing Signal Phasing	.25
7.	5 Existing Vehicle Trip Distribution	.26
7.	 Existing and Approved Primary school – North stratmend	.20
8	Future Traffic Volumes	.31
8.	2 Development Traffic	.33
	8.2.2 Concord West Masterplan	.33
	8.2.3 EXISTING INDUSTRIAL LOTS	.34
9	Proposed Pomerov Street / George Street Intersection Upgrade	38
, 10	Traffic Assessment	30
11	Conclusions/recommendations	<u></u> Δ2
12	References	/ 72
١Z		J

Appendix A – Traffic Counts

Appendix B – RMS History File

Appendix C – Intersection Upgrade Plan

Appendix D – Sidra Movement Summaries

Appendix E – Parking Assessment

1 Executive Summary

This report has been prepared in accordance with the *RMS Guide to Traffic Generating Developments* and the *RMS Traffic Modelling Guidelines* to identify the volume of additional traffic that will be generated by a new master-planned neighbourhood to be known as "Parkside" and the other potential developments within the Concord West precinct and to assess the impact of this additional traffic on the surrounding local road network.

The site of this new master-planned neighbourhood is a 6.8 hectare site bounded by Homebush Bay Drive in the west, the northern rail line in the east, Concord Avenue in the north and the Westpac Service Centre at 1 King Street in the south,

The Concord West Precinct is well connected to public transport, with rail and bus connections located within the precinct or an easy walking distance from the precinct. Concord West railway station is located on the eastern boundary of the precinct and is easily accessible by pedestrians via a full width concrete path paving.

The sustainable transport initiatives encourage the future residents and staff of future businesses to make greater use of public transport, cycling walking and car sharing for commuting and work-related journeys.

After the Planning Proposal is approved, Green Travel Plans should be prepared in support of any future development applications to Council for sites within the precinct. The plan should be developed using this Precinct Transport Plan as a guide.

The proposed Concord West Precinct works includes extensive upgrades to the existing pedestrian network to complement the existing footpaths and pedestrian crossings. These upgrades include the creation of a shared zone and an improved connection to the Concord West train station and rail underpass.

It is proposed to construct a separated dedicated cycle path along the length of Victoria Avenue and on King Street between Victoria Avenue and Station Avenue. This will formalise the bicycle link between the existing Sydney Olympic Park bike network and Council's proposed Queen Street short term future bike network.

The proposed works improve on Council's current Victoria Avenue on road bicycle route by upgrading it to a separated bicycle path and also continuing it towards King Street with more desirable and safer access to the existing Concord West station's bicycle facilities and the rail underpass adjacent to Station Avenue.

The proposed George Street / Pomeroy intersection works include two left turn slip lanes to and from the northern leg and additional peak hour parking restrictions. These proposed works will increase the capacity of the intersection to cater for the additional traffic that will be generated by the future growth in background traffic over a 10 year timeframe as well as the additional traffic that will be generated by redevelopment within the Concord West Precinct.

2 Introduction

Barker Ryan Stewart have been engaged by Kulcher Pty Ltd to prepare a Precinct Transport Plan to support a Planning Proposal for a new master-planned neighbourhood in the northern section of the Concord West Precinct.

This Precinct Transport Plan has been prepared in accordance with the NSW Government's 'Guide to Traffic Generating Developments' (formerly RMS Guide), 'Traffic Modelling Guidelines' and various Canada Bay Council documents that form part of the Concord West Transport and Access Strategy.

The purpose of this report is to identify the volume of additional traffic that will be generated by the new master-planned neighbourhood and the other potential developments within the Concord West precinct and to assess the impact of this additional traffic on the surrounding local road network.

The site of the new master-planned neighbourhood, to be known as "Parkside", is a 6.8 hectare site bounded by Homebush Bay Drive in the west, the northern rail line in the east, Concord Avenue in the north and the Westpac Service Centre at 1 King Street in the south, as shown below in Figure 2.1 and Figure 2.2.

Concord West station is located at the south-eastern corner of the site,

Figure 2.1: Locality Plan

SITE AREA: 6.8 HA

Figure 2.2: Detailed view of the site.

3 Concord West Transport and Access Strategy

3.1 Canada Bay Local Planning Strategy 2010 – Part 5 Transport and Access

The Canada Bay Local Planning Strategy 2010 Part 5 Transport and Access outlines the Transport and Access policies planning context and includes comments on the State Plan, Metropolitan Strategy, Inner West Subregion, Metropolitan Transport Plan – Connecting the Cities, Integrating Land Use Transport – Improving Transport Choice, Integrating Land Use Transport – The Right Place for Business, NSW Planning Guidelines for Walking and Cycling and the NSW Bike Plan 2012 – Action for Bikes.

These policies are summarised below:

<u>State Plan</u>

The state plan contains the following targets relevant to Transport and Access:

- Improved health through reduced obesity, smoking, illicit drug use and risk drinking.
- Increasing share of peak hour journeys on a safe and reliable public transport system.
- Safe roads.
- Jobs closer to home.

Metropolitan Strategy

The Sydney Metropolitan Strategy identifies the Sydney transport system based on the public transport network including rail, transit ways and bus services, ferries and taxis, the road network and walking and cycling networks.

Transport actions by the Metro Strategy positively impacting Canada Bay include:

- Improving local walking and cycling networks.
- Working in partnership with government agencies to increase capacity of rail and bus services.
- Improving the integration of public transport, and
- Improving transport planning.

Inner West Subregion Strategy

On an average weekday the residents of the Inner West Subregion make over 880,000 trips, at a rate of 3.9 trips per day. Over half of these trips start and finish in the Inner West Subregion.

Council's role to address the Inner West Subregional Strategy in relation to transport includes:

- Work in partnership with the Ministry of Transport to coordinate and implement the Strategic Bus Corridors.
- Work in partnership with the Department of Planning and the RMS in continuing to upgrade walking and cycling facilities to improve everyday access within neighbourhoods and to improve access to waterways, bushland, parks and centres.
- Continuation of existing work of the Bay Run as part of the Sharing Sydney Harbour Access Program.

Metropolitan Transport Plan - Connecting the Cities

In 2010 the NSW State Government released the Metropolitan Transport Plan Connecting the City of Cities, the benefits to the City of Canada Bay will include a Sydney Metro Station as part of the Sydney West Metro rail link.

Integrating Land Use Transport – Improving Transport Choice

These guidelines developed by the Department of Urban Affairs (now the Department of Planning) provide advice on how to better integrate land use and transport planning and provide greater transport choice.

Integrating Land Use Transport - The Right Place for Business

The Policy developed by the Department of Urban Affairs (now the Department of Planning) explains why business and services which generate transport demand should be in locations that offer a choice of transport to encourage people to make fewer and shorter trips.

NSW Planning Guidelines for Walking and Cycling

These guidelines aim to assist land use planners to improve consideration of walking and cycling in their work. It is anticipated that improving practice in planning for walking and cycling will create more opportunity for people to live in places with easy walking and cycling access to urban services and public transport.

NSW Bike Plan 2012 - Action for Bikes.

Action for bikes sets out a 10 year plan for the creation of a series of arterial bicycle networks across NSW. The plan advocates the construction of off-road cycle ways wherever practical when new roads are built and the creation of off-road cycle ways wherever possible.

Figure 3.1: Canada Bay Public Transport Map (Extract from the Local Planning Strategy 2010)

3.2 Concord West Transport Report (by GTA)

In 2014 Canada Bay Council engaged GTA Consultants to prepare a Draft Concord West Transport Report. The purpose of the report was to assess the anticipated transport implications of the proposed rezoning objective of the Concord West Precinct.

The report outlines that the Concord West Precinct study area is quite unique from a transport perspective with the area being bordered by the railway line to the east, Homebush Bay Drive to the west and Liberty Grove development to the north. As a result, all the traffic to the area is funnelled through George Street via the intersection with Pomeroy Street to the south.

The study area has good public transport accessibility with the Concord West Railway Station with frequent rail services located within a short walk to the majority of the study area (Appendix A). The railway line is complemented by bus services that operate along Concord Road to the east (Appendix B). The study area is also well positioned to the regional bicycle network (Appendix C).

The following image extracted from the study outlines the key issues identified by GTA Consultants.

Figure 3.2: Pedestrian and cycle networks prepared by GTA Consultants

The report indicated that those who cycle to and from work are generally prepared to cycle up to 10km, Figure 3.3 below shows the 10km catchment around the study area.

Figure 3.3: Regional cycle network prepared by GTA Consultants

3.3 Strategic Review of the Canada Bay Bike Plan

In 2014 Canada Bay Council engaged Transport and Urban Planning to prepare a Strategic Review of the Canada Bay Bike Plan that was prepared in 2005. The primary aim of the review was to rationalise the existing bike route network and prioritising the short and medium term works to improve and extend the network.

As a result of the review the 2005 bike routes have been rationalised and where possible combined into longer routes while some redundant and parallel routes have been replaced.

Two categories of routes were identified, Main Routes and Secondary Routes:

- Main Routes are generally long and traverse a significant portion of the LGA and connect several destinations. These routes are where the majority of funds and resources should be allocated. There are 7 main routes.
- Secondary Routes are the remainder, generally shorter and provide links between main routes and/or to a single destination. There are 17 secondary routes.

The short, medium and long term proposed Main Routes and Secondary Routes are shown on the City of Canada Bay bicycle network maps attached in Appendix C.

3.4 Sydney West Metro

In November 2016, the NSW Government announced the Sydney Metro West project – the city's next underground metro railway.

This new underground railway will connect Greater Parramatta and the Sydney CBD. The aim is to double rail capacity between these two areas, linking new communities to rail services and unlocking housing supply and employment growth between the two CBDs.

Figure 3.4 shows the Sydney West Metro Study Area. The locations of seven proposed metro stations have been confirmed at Westmead, Parramatta, Sydney Olympic Park, North Strathfield, Burwood North, Five Dock and The Bays. Further planning is underway to determine the location of a new metro station within the Sydney CBD and at Pyrmont.

Figure 3.4: Sydney West Metro.

Sydney Metro West features

- Faster, more frequent access to major employment and education centres like Parramatta, Sydney Olympic Park and The Bays
- A new metro station at Westmead one of Australia's largest health and education precincts
- Delivering new rail services for the first time at Burwood North, Five Dock and The Bays
- A new metro station at Sydney Olympic Park Sydney's sporting and entertainment super-precinct

- A new metro station at Pyrmont delivering major benefits to the Pyrmont community and supporting plans to transform the harbourside suburb
- Integrated with the rest of Sydney's public transport system
- Fully accessible with lifts and level access between trains and platforms
- Next generation fully air-conditioned metro trains
- All Sydney Metro infrastructure like the stations, trains and railway tracks are owned by the NSW Government

3.5 The City of Canada Bay Local Strategic Planning Statement 2020

The City of Canada Bay Local Strategic Planning Statement (LSPS) is the core strategic planning document for the City of Canada Bay. It will guide the character of the local centres and neighbourhoods into the future. The LSPS brings together and builds on planning work found in Council's other plans, studies and strategies such as the Local Environmental Plan (LEP), Development Control Plans (DCP) and Contributions Plans. The LSPS will provide the reasoning for any future changes to Council's planning controls and shape how Council's local environmental plan (LEP) and development control plan (DCP) evolve over time.

The LSPS gives effect to the Eastern City District Plan, implementing priorities and actions at a local level. It is also informed by other state-wide and regional policies including the Future Transport Strategy 2056 and the State Infrastructure Strategy. The LSPS outlines how these plans will result in changes at the local level, such as new or improved transport connections.

3.6 Eastern City District Plan

The Eastern City District Plan is a 20-year plan to manage growth in the context of economic, social and environmental matters to achieve the 40-year vision for Greater Sydney. It contains the planning priorities and actions for implementing the Greater Sydney Region Plan, A Metropolis of Three Cities, at a district level and is a bridge between regional and local planning.

The Eastern City District covers the Bayside, Burwood, City of Canada Bay, City of Sydney, Inner West, Randwick, Strathfield, Waverley and Woollahra local government areas.

The District Plan informs local strategic planning statements and local environmental plans, the assessment of planning proposals as well as community strategic plans and policies. The District Plan also assists councils to plan for and support growth and change and align their local planning strategies to place-based outcomes. It guides the decisions of State agencies and informs the private sector and the wider community of approaches to manage growth and change. Community engagement on the District Plan has contributed to a plan for growth that reflects local values and aspirations, in a way that balances regional and local considerations.

3.7 Greater Sydney Region Plan – A Metropolis of 3 Cities

The Greater Sydney Region Plan (the Plan) sets a 40-year vision (to 2056) and establishes a 20-year plan to manage growth and change for Greater Sydney in the context of social, economic and environmental matters. It informs district and local plans and the assessment of planning proposals, assists infrastructure agencies to plan and deliver for growth and change and to align their infrastructure plans to place-based outcomes and informs the private sector and the wider community of the growth management and infrastructure investment intentions of government.

The Plan integrates land use, transport and infrastructure planning between the three tiers of government and across State agencies.

3.8 Australian Bureau of Statistics - Concord Census Data

The following extract was taken from the Australian Bureau of Statistics for Concord outlines the various travel to work methods as indicated by respondents in the 2016 census data.

In 2016 68.4% of respondents stated that they travelled to work by car compared to an average of 57.6% for NSW and 60.2% for Australia. A small proportion of people travelled to work via train, 4.6% of respondents compared to 6.2% on average for NSW and 3.9% on average for Australia.

Travel to work, top responses Employed people aged 15 years and over	Concord	%	New South Wales	%	Australia	%
Car, as driver	3,846	55.1	1,953,399	57.8	6,574,571	61.5
Train	751	10.8	252,786	7.5	488,012	4.6
Worked at home	328	4.7	163,026	4.8	503,582	4.7
Train, bus	292	4.2	60,155	1.8	104,122	1.0
Car, as passenger	237	3.4	144,820	4.3	489,922	4.6
People who travelled to work by public transport	1,582	22.6	540,215	16.0	1,225,668	11.5
People who travelled to work by car as driver or passenger	4,358	62.3	2,182,854	64.6	7,305,271	68.4

In Concord (State Suburbs), on the day of the Census, the most common methods of travel to work for employed people were: Car, as driver 55.1%, Train 10.8% and Worked at home 4.7%. Other common responses were Train, bus 4.2% and Car, as passenger 3.4%. On the day, 22.6% of employed people used public transport (train, bus, ferry, tram/light rail) as at least one of their methods of travel to work and 62.3% used car (either as driver or as passenger).

Figure 3.5: Australian Bureau of Statistics - Concord Census Data 2016

4 Existing Public/Active Transport Options

The Concord West Precinct is well connected to public transport, with rail and bus connections located directly within the precinct or in easy walking distance to/from the precinct.

Train Service

Concord West railway station is located adjacent to the eastern boundary of the precinct and is easily accessible by pedestrians via a full width concrete path paving.

The station sits on the "T1 North Shore" and "T1 Epping" which allows access to the Sydney train system. The Sydney Trains Network Map is attached in Appendix A.

Bus Service

The site is located approximately 550 metres from the bus stops in Concord Road to the east of the site. The bus services that run along Concord Road include Bus Route 458, 459, M41 and N80.

The site is also 1.5km from the bus routes 450, 525 and 526 that run along Underwood Road. However, at a distance of 1.5km these routes may be considered a bit too far away to walk for most commuters that will live in the northern part of the Concord West Precinct.

Car Share

There are existing GoGet car share pods to the north of the precinct, the closest one being more than 1.2km away near IKEA in Rhodes.

Pedestrian Network

The site is well connected with pedestrian footpaths which allow easy access from the Concord West railway station to and from the Concord West Precinct and beyond.

This existing pedestrian network of footpaths on public roads could encourage people to walk from destination to destination or use a combination of public transport and walking.

Cycling Network

Queen Street on the eastern side of the railway line will become one of the main bicycle routes through the Concord West Area. A secondary bicycle route in Victoria Street to the north connects to the Sydney Olympic Park bike network. These routes link the precinct with a number of existing recommended off and on-road cycle routes as shown in the Canada Bay bike network maps. There are bike lockers and bike stands located at Concord West Station.

Photo 1: Concord West Station - With existing bicycle facilities in background

5 Proposed Sustainable Transport Initiatives

5.1 Introduction

A number of sustainable travel options have been incorporated into the Architectural and Landscape Architectural Precinct design (see plans at Appendix H). It is also recommended the management of the new buildings to be constructed within the precinct are to complement the existing transport options and provide a holistic strategy to positively influence the behaviour of future occupants within the precinct.

The overall precinct strategy should be based around two main 'streams':

- Reducing private car use with public transport as the primary mode for distance trips; and
- Pedestrian/cyclist provisions for shorter trips.

5.2 Green Travel Plan (future DA's)

After the Planning Proposal is approved, Green Travel Plans should be prepared in support of any future development applications to Council for sites within the precinct. The plan should be developed using this Precinct Transport Plan as a guide. The Green Travel Plans should provide information and recommendations on sustainable travel options within the precinct and would be readily available and structured in a manner that provides concise, relevant and easily understood information for the targeted readers.

The Green Travel Plans should be developed to demonstrate the sustainable transport initiatives being adopted in the proposal and the strategies to be used by the future strata corporation/building managers to encourage residents and staff of any businesses within the precinct to adopt the preferred modes.

5.3 Public Transport Opal Card

The Sydney public transport ticketing system has transitioned to the Opal card. Since the start of 2016 paper tickets have been phased out. The Opal carding system has advantages such as the provision of off-peak discounts, and daily and weekly caps. This encourages the use of public transport for the likely demographic that will reside within the Concord West Precinct. The figure below shows the one current Opal retailer (red flag) located approximately 100m to the east of the Concord West Precinct on the other side of the Railway line.

Figure 5.1: Existing Opal Card Retailer

<u>Opal Outlet</u>

The precinct's location provides very good access to public transport, being only a short walking distance to the Concord West train station and to a less convenient extent, the proximity to bus routes. As such, consideration should be given to future retailers operating within the precinct to consider also operating as an Opal Card retailer.

5.4 Car Share System

Car sharing schemes provide a convenient, affordable and sustainable transport option for residents and businesses. It enables sustainable travel habits, keeps people connected and provides an efficient use of parking space – a single car share vehicle can replace any number of private vehicles that would otherwise compete for local parking.

There are existing GoGet car share pods to the north of the site, the closest one being more than 1.2km near IKEA in Rhodes.

Figure 5.2: Car sharing pod locations

The concept of car share schemes is conducive to commercial, retail and residential developments located in the vicinity of a CBD. The membership and car hire rates preclude the need to maintain and register, let alone purchase a vehicle. For a location like Concord West Precinct, a car sharing space would enable residents living within the precinct an alternative transport option. Petrol is also included in the car hire, so the only financial considerations that car share customers need to be mindful of, is the membership and car hire rate.

GoGet's membership rates are tailored for specific users. Considering the location of the precinct it is likely to be an attractive travel option for the odd times cycling or catching public transport is not suitable. There are also other car sharing companies such as Popcar Sharing Pod and Flexicar.

As the closest GoGet is 1.2km away, consideration could be given to providing additional allocated car share pods within the precinct sufficient to adequately service the needs of a future population of more than 3,000 residents.

5.5 Pedestrians and Cyclists

<u>Pedestrians</u>

Extensive public pedestrian footpaths exist in the Concord West Precinct. As the precinct is located adjacent to the Concord West train station with a number of key public facilities within walking distance to the precinct.

This existing pedestrian network of footpaths on public roads would encourage people to walk from destination to destination or use a combination of public transport and walking.

The site's location has also been assessed using the "Walkscore" locational performance tool. The tool was developed in 2007, by Front Seat, using Google maps tools. This tool takes into account the number of facilities within close proximity and provides a numerical score between 0 and 100. A development with a score 0 would be heavily car dependent and 100 would indicate that numerous facilities are easily accessible.

Concord West has a walk score rating of 65 out of 100, which is defined on the Walkscore website as a "Somewhat Walkable - Some errands can be accomplished on foot".

The proposed Concord West Precinct works includes extensive upgrades to the existing pedestrian network to complement the existing footpaths and pedestrian crossings. These upgrades include the creation of a shared zone and an improved connection to the Concord West train station and rail underpass.

The proposal also includes neighbourhood centre zoning with the opportunity for 2,000 to 3,000m² of retail / commercial floor space which will further improve the walkability of the precinct.

Bicycle Network and Facilities

In the near vicinity of the Concord West Precinct, Queen Street on the eastern side of the railway line will become one of the main bicycle routes through the Concord West Area. A secondary bicycle route in Victoria Street within the precinct connects to the Sydney Olympic Park bike network. These routes link the site with a number of existing recommended off and on-road cycle routes as shown in the Canada Bay bike network maps in Appendix C.

There is an existing secure bike locker and bike stands adjacent to the Concord West railway station.

It is proposed to construct a separated dedicated cycle path along the length of Victoria Avenue and on King Street between Victoria Avenue and Station Avenue (see Appendix H). This will formalise the bicycle link between the existing Sydney Olympic Park bike network and Council's proposed Queen Street short term future bike network (see Appendix C).

The proposed works **improves on Council's** current Victoria Avenue on road bicycle route by upgrading it to a separated bicycle path and also continuing it towards King Street with more desirable and safer access to the existing Concord West **station's** bicycle facilities and the rail underpass adjacent to Station Avenue.

6 Parking Assessment

The new master-planned **neighbourhood**, to be known as "Parkside", is estimated to yield 1,464 residential units and 2,797m² of retail space. Details of the proposed development yield are provided below in Table 6.1.

Block	Site Area (m²)	GFA (m2)	FSR Residential GFA (m ²)		No. of Res Units	Retail GFA (m ²)
Block 1	3,413	8,489	2.5	8,489	96	
Block 2	3,235	8,042	2.5	8,042	91	
Block 3	3,461	12,371	3.6	11,933	135	438
Block 4	2,810	10,115	3.6	9,228	105	887
Block 5	3,346	12,019	3.6	12,019	136	
Block 6	5,037	16,059	3.2	16,059	182	
Block 7	2,784	9,974	3.6	8,894	101	1,080
Block 8	3,541	12,742	3.6	12,742	144	
Block 9	815	2,929	3.6	2,537	29	392
Block 10	1,016	3,654	3.6	3,654	41	
Block 11	2,874	5,733	2.0	5,733	57	
Block 12	2,833	8,501	3.0	8,501	85	
Block 13	3,126	6,236	2.0	6,236	62	
Block 14	2,942	5,820	2.0	5,820	58	
Block 15	2,173	4,349	2.0	4,349	43	
Block 16	2,725	5,460	2.0	5,460	55	
Block 17	2,182	4,356	2.0	4,356	44	
Total	48,313	136,849	2.8	134,052	1,464	2,797

Table 6.1: Proposed Development Yield

The parking requirement has been assessed based on the rates set out in City of Canada Bay Development Control Plan: Special Precincts – Concord West Precinct (Concord West DCP).

Concord West DCP stipulates the following maximum car parking provision within Concord West Precinct:

- Residential
 - ➢ 0.3 spaces per studio unit
 - > 0.5 spaces per 1 bedroom apartment
 - 0.9 spaces per 2 bedroom apartment
 - 1.2 spaces per 3 bedroom apartment
 - ➤ 1 visitor space per 10 apartments
- Retail
 - 1 space per 70m2 GFA

The proposed apartment mix is not yet known at this stage. However, it is noted that the draft Canada Bay Local Strategic Planning Statement (LSPS) seeks to amend the Council Local Environmental Plan 2013 (LEP). The proposed changes include introduction of a new clause to increase diversity of apartment sizes. The proposal requires that residential flat buildings and mixed-use developments that include at least 10 dwellings to provide the following:

- at least 20% of the dwellings as self-contained studio or one-bedroom dwellings, and
- at least 20% of the dwellings as three or more-bedroom dwellings.

To estimate the indicative unit mix of the proposed development, it is assumed that 20% of all dwellings will be one-bedroom units and 20% will be three-bedroom units.

Table 6.2 shows the car parking requirement of the proposed development based on the Concord West DCP rates.

T I I (O	<u> </u>			
Table 6.2	Concord	West DCP	Parking	requirement
10010 0.2.	00110010	11001001	i anang	roganomon

	No. of	Retail GFA	Assume	d Unit Mix	×	Maximum Parking Rate		Maximum Allowable Parking			
	Res Units	(mz)	1-bed	2-bed	3-bed	Residential	Retail	Resident	Visitor	Retail	Total
Block 1	96	0	20	56	20			85	10	0	95
Block 2	91	0	19	53	19	0.3 spaces per studio + 0.5 spaces per 1 bedroom apartment + 1		80	10	0	90
Block 3	135	438	27	81	27			19	14	0	33
Block 4	105	887	21	63	21			92	11	18	121
Block 5	136	0	28	80	28			120	14	0	134
Block 6	182	0	37	108	37		1 per 70m2 GFA	160	19	0	179
Block 7	101	1,080	21	59	21			89	10	18	117
Block 8	144	0	29	86	29	0.9 spaces		127	14	0	141
Block 9	29	392	6	17	6	per 2-bedroom		26	3	4	33
Block 10	41	0	9	23	9	apariment		32	4	0	36
Block 11	57	0	12	33	12	+ 1.2 spaces per 3- bedroom apartments +		50	6	0	56
Block 12	85	0	17	51	17	0.1 visitor space unit		75	9	0	84
Block 13	62	0	13	36	13			55	6	0	61
Block 14	58	0	12	34	12			51	6	0	57
Block 15	43	0	9	25	9			38	5	0	43
Block 16	55	0	11	33	11			49	6	0	55
Block 17	44	0	9	26	9			39	5	0	44
Total	1,464	2,797	300	864	300			1,187	152	40	1,379

7 Existing Traffic Conditions

7.1 Site Location

The intersection of George Street and Pomeroy Street is the only entry into the Concord West precinct, as it is bordered by Homebush Bay Drive to the west, and the T1 Epping railway line. Homebush Bay Drive is an access-controlled road with no property access to or from the Concord West precinct.

Figure 7.1: Aerial photo of George Street / Pomeroy Street, Concord West

7.2 Existing Road Conditions

George Street is the access road that runs north/south that facilitates a 'driveway' function for the precinct. It terminates in the south at Great Western Highway (Parramatta Road). In the vicinity of the site, it is generally a four-lane, two-way road with kerb-side parking permitted. It is generally a two-lane two-way road further away from the intersection. On the southern leg, there is a school speed zone (40km/h). Otherwise, the speed zone is a default 50km/h.

Pomeroy Street runs east/west from the intersection. It carries traffic to Homebush Bay Drive and Great Western Highway via Underwood Road. Like George Street, in the vicinity of the intersection, there are four lanes that drops to two further away from the intersection. On the eastern leg, there is another school zone (40km/h), that would otherwise be a default 50km/h.

The intersection is signalised with the only dedicated turning lane being the right turning into George Street north.

The adjacent intersection, 140 metres to the east of George Street, is the Pomeroy Street / Queen Street / Beronga Street intersection which is a 4-way, single lane roundabout.

Queen Street is a local road providing a north/south connection between Concord Road at Rhodes in the north and Parramatta Road, Strathfield in the south. It has a 13 metre wide pavement consisting of two, 3.5 metre wide travel lanes and two, 2.5 metre wide parking lanes.

7.3 Existing Traffic Volumes

Barker Ryan Stewart engaged Matrix Traffic to conduct traffic counts at the Pomeroy Street / George Street and Pomeroy Street / Queen Street intersections from 8.00am to 10.00am and 4.00pm to 6.00pm on Thursday 31st May 2018. The results of the traffic surveys are shown below in Figures 6.2 and 6.3. The full survey results are provided in Appendix A.

Further intersection counts were conducted in July 2020, however, when compared to the 2018 counts, these were considered to be unreliable due to the impact of the Covid-19 pandemic on traffic volumes and travel patterns. The 2018 traffic counts were considered to be more indicative of the normal traffic flow characteristics and were therefore retained as the base traffic volumes for intersection analysis.

The 2018 traffic counts include the traffic generated by the Victoria Avenue Public School (that was estimated in the 2014 GTA Report) however, since 2018 another school has commenced operation in Hamilton Street, North Strathfield, that generates traffic through the George Street / Pomeroy Street intersection. The traffic generated by this school (Our Lady of the Assumption) is assessed in Section 7.5 of this report.

Figure 7.2: Traffic Counts Summary – AM Peak Hour Summary

Figure 7.3: Traffic Counts Summary – PM Peak Hour Summary

7.4 Existing Signal Phasing

Phasing information from the intersection's History File on the 31st of May obtained from RMS provided the phase sequence, timing and average duration over every 15-minute period for 24 hours. The full history file is available in Appendix B.

The phasing diagram shows there are 3 phases:

- A Phase: All green on Pomeroy Street;
- B Phase: Controlled right turn from Pomeroy Street to George Street north; and
- C Phase: All green on George Street.

Figure 7.4: Phasing diagram

According to the phasing data below, during morning and afternoon peak periods, all phases ran. The morning peak was found to have an average cycle time of approximately 120 seconds while the afternoon peak was found to have an average cycle time of approximately 113 seconds.

brs.com.au

Phase	0800-0815	0815-0830	0830-0845	0845-0900	Avg (s)
А	42	56	54	61	53
В	15	16	18	20	17
С	30	41	70	58	50
Total	87	113	142	139	120

Table 7.1: Cycle and Phase Averages – AM

Table 7.2: Cycle and Phase Averages - PM

Phase	1615-1630	1630-1645	1645-1700	1700-1745	Avg (s)
А	43	47	48	48	47
В	16	15	20	18	17
С	38	42	55	61	49
Total	97	104	123	127	113

7.5 Existing Vehicle Trip Distribution

The existing proportion of traffic which utilises each movement at the intersection represents the sum distributions of trips generated locally and further afield. As such, the anticipated distribution of additional trips generated by changes to the Concord West Precinct and the neighbouring school at Hamilton Street, North Strathfield are assumed to conform to this distribution.

7.5.1 Existing and Approved Primary School – North Strathfield

As identified above, since the 2018 traffic surveys, a new primary school has commenced operation in Hamilton Street, North Strathfield (DA2015/0408) with a capacity for up to 450 students and 27 staff with ancillary child care.

Trip generation rates for this site have been adopted from the 2014 GTA report that included the now operational Victoria Avenue Primary School at Concord West which also included child care. Based on the JRPP report (2012SYE119) the school would contain a maximum of 600 students and 72 staff. The trip generation rates for this school were ultimately based on the McLaren Report prepared on behalf of the Department of Education, which were 0.356 peak hour vehicle trips (PHVTs) per student and 0.5 PHVTs per staff. The new school at Hamilton Street, North Strathfield will accommodate up to 450 students and 27 staff, resulting in the following peak hour trip generation.

		Traffic Generation					
Period	Direction	Student Trips	Staff Trips	Total			
AM Peak Hour	In	80	13.5	94			
8am-9am	Out	80	0	80			
PM Peak Hour	In	80	13.5	94			
3pm-4pm	Out	80	0	80			

Table 7.3: Estimated traffic generation for 1A Hamilton Street, North Strathfield

Note that the PM peak hour for the school falls outside the intersection peak hour and has been discounted from further analysis.

The distribution of trips at the George Street / Pomeroy Street intersection are illustrated below in Figure 7.5 (Concord West Precinct) and Figure 7.6 (new school in Hamilton Street). All additional traffic that will be generated by future developments has been distributed proportionately as shown below.

Figure 7.5: Traffic Distribution - Percentage split from the Concord West Precinct

Figure 7.6: Traffic Distribution - Percentage split from Hamilton Street school traffic

The traffic volumes generated by the new school have been added to the AM peak volumes recorded in May 2018 in accordance with the above distribution.

7.6 Existing Intersection Operation

Based on the information outlined in the previous sections and site observations, the Pomeroy Street / George Street and Pomeroy Street Queen Street / Beronga Street intersections have been modelled using SIDRA 8 software to obtain a baseline for their operational performance.

The below movement summaries show the results of the Sidra modelling during the morning and afternoon peak periods (8.00am to 9.00am and 4.30pm to 5.30pm).

The full set of SIDRA analyses are attached in Appendix D.

MOVEMENT SUMMARY

Site: 101 [Pomeroy George - AM Base]

中中Network: N101 [Pomeroy AM Base]

Pomeroy George - AM Base Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Move	ment	Performa	nce - V	/ehicles	;									
Mov	Turn	Demand	Flows	Arrival F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Turri	Total	ΗV	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	: Georg	e Street												
1	L2	78	0.0	78	0.0	0.323	35.8	LOS C	9.1	63.5	0.79	0.70	0.79	32.4
2	T1	137	0.0	137	0.0	1.448	43.1	LOS D	47.3	330.8	0.79	0.74	0.86	30.9
3	R2	241	0.0	241	0.0	1.448	461.8	LOS F	47.3	330.8	1.00	2.10	3.57	3.6
Appro	ach	456	0.0	456	0.0	1.448	263.3	LOS F	47.3	330.8	0.90	1.45	2.28	8.0
East:	Pomero	y Street												
4	L2	523	0.0	523	0.0	0.513	22.0	LOS B	18.7	130.7	0.67	0.77	0.67	33.6
5	T1	531	0.0	531	0.0	0.671	17.1	LOS B	18.7	130.6	0.66	0.58	0.66	33.6
6	R2	127	0.0	127	0.0	0.351	37.2	LOS C	5.7	39.9	0.84	0.78	0.84	27.5
Appro	ach	1181	0.0	1181	0.0	0.671	21.4	LOS B	18.7	130.7	0.68	0.69	0.68	32.7
North:	Georg	e Street												
7	L2	143	0.0	143	0.0	0.226	34.6	LOS C	5.9	41.5	0.75	0.75	0.75	25.9
8	T1	123	0.0	123	0.0	0.909	71.4	LOS F	13.1	91.5	1.00	1.09	1.44	25.1
9	R2	66	0.0	66	0.0	0.909	75.9	LOS F	13.1	91.5	1.00	1.09	1.44	22.8
Appro	ach	333	0.0	333	0.0	0.909	56.5	LOS D	13.1	91.5	0.89	0.94	1.15	24.7
West:	Pomer	oy Street												
10	L2	227	0.0	227	0.0	0.897	48.1	LOS D	31.5	220.6	0.82	0.91	1.03	28.6
11	T1	431	0.0	431	0.0	0.897	48.4	LOS D	31.5	220.6	0.83	0.94	1.11	16.9
12	R2	74	0.0	74	0.0	0.897	68.2	LOS E	11.6	81.3	0.86	1.03	1.34	24.1
Appro	ach	732	0.0	732	0.0	0.897	50.3	LOS D	31.5	220.6	0.83	0.94	1.11	22.2
All Ve	hicles	2701	0.0	2701	0.0	1.448	74.4	LOS F	47.3	330.8	0.78	0.92	1.12	18.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mover	Movement Performance - Pedestrians										
Mov		Demand	Average Level of	Average Back	Prop.	Effective					
ID	Description	Flow	Delay Service	Pedestrian	Distance	Queued	Stop Rate				
		ped/h	sec	ped	m						
P1	South Full Crossing	68	16.6 LOS B	0.1	0.1	0.53	0.53				
P2	East Full Crossing	119	35.4 LOS D	0.3	0.3	0.77	0.77				
P3	North Full Crossing	9	23.4 LOS C	0.0	0.0	0.63	0.63				
P4	West Full Crossing	28	33.0 LOS D	0.1	0.1	0.74	0.74				
All Ped	lestrians	225	28.9 LOS C			0.69	0.69				

Site: PQ [Pomeroy Queen - AM Base]

^{中中}Network: N101 [Pomeroy AM Base]

Pomeroy Queen - AM Base Site Category: (None) Roundabout

Movement Performance - Vehicles														
Mov	Turn	Demand F	lows	Arrival F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Turri	Total	ΗV	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South:	Queer	n Street												
1	L2	425	0.0	425	0.0	0.724	19.0	LOS B	8.0	55.8	0.96	1.18	1.47	23.9
2	T1	5	0.0	5	0.0	0.724	17.8	LOS B	8.0	55.8	0.96	1.18	1.47	31.7
3	R2	7	0.0	7	0.0	0.724	22.1	LOS B	8.0	55.8	0.96	1.18	1.47	33.5
Approa	ach	438	0.0	438	0.0	0.724	19.0	LOS B	8.0	55.8	0.96	1.18	1.47	24.3
East: E	Berong	a Street												
4	L2	3	0.0	3	0.0	0.488	9.0	LOS A	4.4	30.7	0.90	0.79	0.90	43.1
5	T1	385	0.0	385	0.0	0.488	9.6	LOS A	4.4	30.7	0.90	0.79	0.90	35.2
6	R2	1	0.0	1	0.0	0.488	14.3	LOS A	4.4	30.7	0.90	0.79	0.90	42.7
Approa	ach	389	0.0	389	0.0	0.488	9.6	LOS A	4.4	30.7	0.90	0.79	0.90	35.3
North:	Queer	n Street												
7	L2	9	0.0	9	0.0	0.437	11.5	LOS A	4.3	29.9	0.84	0.72	0.84	34.7
8	T1	33	0.0	33	0.0	0.437	10.4	LOS A	4.3	29.9	0.84	0.72	0.84	37.2
9	R2	305	0.0	305	0.0	0.437	14.6	LOS B	4.3	29.9	0.84	0.72	0.84	25.6
Approa	ach	347	0.0	347	0.0	0.437	14.1	LOS A	4.3	29.9	0.84	0.72	0.84	27.5
West:	Pomer	oy Street												
10	L2	187	0.0	170	0.0	0.440	3.5	LOS A	3.9	27.3	0.10	0.53	0.10	43.8
11	T1	266	0.0	242	0.0	0.440	4.1	LOS A	3.9	27.3	0.10	0.53	0.10	47.0
12	R2	362	0.0	329	0.0	0.440	8.8	LOS A	3.9	27.3	0.10	0.53	0.10	47.7
Approa	ach	816	0.0	<mark>741</mark> №1	0.0	0.440	6.0	LOS A	3.9	27.3	0.10	0.53	0.10	46.6
All Veł	nicles	1991	0.0	<mark>1916</mark> №1	0.0	0.724	11.2	LOS A	8.0	55.8	0.59	0.77	0.71	35.4

The SIDRA reports above show that the Pomeroy Street / George Street intersection is operating at oversaturated conditions in the AM peak, particularly due to the right turn movements in both of the George Street approaches. The poor operation of the right turn movement in the northern (southbound) approach also appears to be affecting the through movement, which is also over-saturated. The Pomeroy Street approaches, however, operate at an acceptable Level of Service D, although the western approach is almost at capacity with a degree of saturation of 0.897.

Site: 101 [Pomeroy George PM Base]

^{中中}Network: N101 [Pomeroy PM Base]

Pomeroy George PM Base

Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Movement Performance - Vehicles														
Mov	Turn	Demand	Flows	Arrival F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Turri	Total	ΗV	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	Georg	e Street												
1	L2	89	0.0	89	0.0	0.153	27.7	LOS B	4.3	30.2	0.66	0.67	0.66	34.7
2	T1	78	0.0	78	0.0	0.684	29.9	LOS C	14.4	101.0	0.79	0.75	0.79	34.3
3	R2	254	0.0	254	0.0	0.684	38.9	LOS C	14.4	101.0	0.87	0.81	0.87	24.7
Appro	ach	421	0.0	421	0.0	0.684	34.9	LOS C	14.4	101.0	0.81	0.77	0.81	29.2
East: I	Pomero	y Street												
4	L2	300	0.0	300	0.0	0.407	25.8	LOS B	13.5	94.5	0.69	0.74	0.69	32.2
5	T1	536	0.0	536	0.0	0.679	22.4	LOS B	18.7	131.1	0.73	0.66	0.73	30.3
6	R2	139	0.0	139	0.0	0.411	40.6	LOS C	6.5	45.4	0.83	0.78	0.83	26.5
Appro	ach	975	0.0	975	0.0	0.679	26.0	LOS B	18.7	131.1	0.73	0.70	0.73	30.2
North:	Georg	e Street												
7	L2	162	0.0	162	0.0	0.209	28.3	LOS B	6.0	41.9	0.68	0.73	0.68	28.4
8	T1	123	0.0	123	0.0	0.563	32.2	LOS C	11.7	81.8	0.83	0.75	0.83	34.0
9	R2	134	0.0	134	0.0	0.563	36.7	LOS C	11.7	81.8	0.83	0.75	0.83	31.8
Appro	ach	419	0.0	419	0.0	0.563	32.1	LOS C	11.7	81.8	0.77	0.75	0.77	31.6
West:	Pomer	oy Street												
10	L2	86	0.0	86	0.0	0.792	30.6	LOS C	22.4	156.7	0.76	0.73	0.80	34.6
11	T1	613	0.0	613	0.0	0.792	29.8	LOS C	22.4	156.7	0.77	0.75	0.85	22.8
12	R2	53	4.0	53	4.0	0.792	43.1	LOS D	11.7	82.8	0.79	0.81	0.96	30.2
Appro	ach	752	0.3	752	0.3	0.792	30.8	LOS C	22.4	156.7	0.77	0.75	0.85	25.5
All Vel	hicles	2566	0.1	2566	0.1	0.792	29.9	LOS C	22.4	156.7	0.76	0.73	0.79	29.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Level of Delay Service sec	Average Back of Pedestrian ped	Queue Distance m	Prop. Queued	Effective Stop Rate					
P1	South Full Crossing	46	21.6 LOS C	0.1	0.1	0.60	0.60					
P2	East Full Crossing	83	28.8 LOS C	0.2	0.2	0.69	0.69					
P3	North Full Crossing	1	21.6 LOS C	0.0	0.0	0.60	0.60					
P4	West Full Crossing	13	26.7 LOS C	0.0	0.0	0.67	0.67					
All Pec	lestrians	143	26.2 LOS C			0.66	0.66					

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BARKER RYAN STEWART | Processed: Wednesday, 3 February 2021 9:47:25 AM

Project: \\brs.local\Data\Business\Norwest\Synergy\Projects\SY16\SY160252\Planning & Engineering\BRS Documentation\Reports\Sidra 2021\Pomeroy Network PM 2021.sip8

Site: PQ [Pomeroy Queen PM base]

中中Network: N101 [Pomeroy PM Base]

Pomeroy Queen PM base Site Category: (None) Roundabout

Move	Movement Performance - Vehicles													
Mov	Turn	Demand F	lows	Arrival F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Turri	Total	ΗV	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South:	Quee	n Street												
1	L2	474	0.0	474	0.0	0.670	12.7	LOS A	6.7	46.7	0.86	0.97	1.11	30.0
2	T1	16	0.0	16	0.0	0.670	11.5	LOS A	6.7	46.7	0.86	0.97	1.11	37.8
3	R2	9	0.0	9	0.0	0.670	15.7	LOS B	6.7	46.7	0.86	0.97	1.11	39.1
Approa	ach	499	0.0	499	0.0	0.670	12.7	LOS A	6.7	46.7	0.86	0.97	1.11	30.6
East: E	Berong	a Street												
4	L2	12	0.0	12	0.0	0.400	10.3	LOS A	3.7	26.2	0.91	0.76	0.91	41.7
5	T1	298	0.0	298	0.0	0.400	10.9	LOS A	3.7	26.2	0.91	0.76	0.91	33.4
6	R2	1	0.0	1	0.0	0.400	15.6	LOS B	3.7	26.2	0.91	0.76	0.91	41.1
Approa	ach	311	0.0	311	0.0	0.400	10.9	LOS A	3.7	26.2	0.91	0.76	0.91	33.9
North:	Queer	n Street												
7	L2	4	0.0	4	0.0	0.346	20.7	LOS B	4.6	32.5	1.00	0.70	1.00	28.2
8	T1	32	0.0	32	0.0	0.346	19.5	LOS B	4.6	32.5	1.00	0.70	1.00	29.8
9	R2	169	0.0	169	0.0	0.346	23.7	LOS B	4.6	32.5	1.00	0.70	1.00	18.8
Approa	ach	205	0.0	205	0.0	0.346	23.0	LOS B	4.6	32.5	1.00	0.70	1.00	21.2
West:	Pomer	oy Street												
10	L2	139	0.0	139	0.0	0.634	3.6	LOS A	8.1	56.5	0.19	0.53	0.19	42.5
11	T1	356	0.0	356	0.0	0.634	4.2	LOS A	8.1	56.5	0.19	0.53	0.19	45.7
12	R2	548	0.0	548	0.0	0.634	8.9	LOS A	8.1	56.5	0.19	0.53	0.19	46.4
Approa	ach	1043	0.0	1043	0.0	0.634	6.6	LOS A	8.1	56.5	0.19	0.53	0.19	45.7
All Veh	nicles	2058	0.0	2058	0.0	0.670	10.4	LOS A	8.1	56.5	0.54	0.69	0.60	37.6

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BARKER RYAN STEWART | Processed: Wednesday, 3 February 2021 9:47:25 AM

Project: \\brs.local\Data\Business\Norwest\Synergy\Projects\SY16\SY160252\Planning & Engineering\BRS Documentation\Reports\Sidra 2021\Pomeroy Network PM 2021.sip8

The existing afternoon peak operates better than the morning peak. Not only is the overall LOS better than the morning, but the saturation levels and average delays are also better. This would be due largely to the absence of any school traffic.

8 Future Traffic Volumes

8.1 Future Background Traffic

Future traffic growth has been adopted from a study conducted by The Transport Planning Partnership (TTPP) in October 2020, based on the Sydney Strategic Travel Forecast Model (STFM) provided by TfNSW. The STFM is a strategic transport planning model that considers population and employment growth and is used for high level of assessment of major infrastructure proposals, transport strategies and policy decision making.

The STFM provides future year traffic volumes to determine the relative traffic growth between years for application to the baseline traffic to provide estimations for future year traffic conditions. The model projects that there will be significant increases in traffic volumes along Pomeroy Street and George Street.

Figure 8.1 and Figure 8.2 show the estimated future traffic volumes over a 10-year planning horizon at the Pomeroy / George Street and Pomeroy Street / Queen Street / Beronga Street intersections.

Figure 8.1: Future AM Background Traffic

Figure 8.2: Future PM Background Traffic

As shown above, it is projected that there would be significant increase in traffic through George Street, however, it is noted that a large part of the area served by George Street has been included in the proposed development and the 2014 Masterplan. Therefore, there would be limited area that can be further developed to be able to generate such significant traffic growth.

However, for a conservative assessment, the STFM growth rates provided by TfNSW have been applied as they are.

8.2 Development Traffic

8.2.1 Parkside

The site of the new master-**planned neighbourhood**, to be known as "Parkside", is a 6.8 hectare site bounded by Homebush Bay Drive in the west, the northern rail line in the east, Concord Avenue in the north and the Westpac Service Centre at 1 King Street in the south.

Parkside is estimated to yield 1,465 residential units and 2,797m² of retail space.

Trip generation associated with the residential use has been estimated using the rates provided in Technical Direction TD13-04A. These rates are considered acceptable since all blocks are within 400 metres of Concord West Station.

The trip generation rates for the residential use are as follows:

- AM peak: 0.19 vehicle trips per unit
- PM peak: 0.15 vehicle trips per unit.

This equates to 278 AM trips and 220 PM trips.

The TTPP study suggested a peak hour trip rate of two vehicle trips per parking space for retail use. It assumed that 40 retail car spaces will be provided on site which equates to 80 peak hour trips (AM and PM).

Whilst it is expected that most of trips related to retail use will be contained within the Concord West precinct, for a conservative assessment, retail trips have been included in the development traffic volumes for Pomeroy Street and George Street.

The total vehicle trips that could be expected to be generated by the proposed Parkside development are therefore:

AM: 278 residential + 80 retail = 358 trips PM: 220 residential + 80 retail = 300 trips

8.2.2 Concord West Masterplan

The masterplan was prepared in 2014 and provides a framework for the proposed rezoning of some industrial sites within the Concord West Precinct into residential zones.

The identified sites are as follows, with their potential yield in residential units:

- Site 1: 7 Concord Avenue 255 units
- Site 2: 202-210 George Street 86 units
- Site 3: 3 King Street 20 units
- Site 5: 176-184 George Street 157 units
- Site 6: 2-10 Rothwell Avenue 141 units
- Site 7: 25 George Street 126 units

The masterplan proposes to provide 785 residential units, however, two of the above sites (Sites 2 and 3) are within the area of the proposed Parkside development. The potential yield from the rezoning of the remaining industrial sites is therefore 785 – 106 = 679 units.

It is noted that parts of Site 1 and Site 7 of the 2014 Masterplan are outside the 400 metre catchment of Concord West train station. It is conservatively estimated that the properties outside the 400 metre catchment account for 20% of the overall dwellings.

The following trip generation rates for the dwellings within the 400 metres to 800 metres catchment.

- AM peak: 0.25 vehicle trips per unit.
- PM peak: 0.28 vehicle trips per unit.

These rates are based on the average rates obtained from a number of comparable sites sourced from research conducted by the former Roads and Maritime Services in 2012 and 2017.

8.2.3 Existing Industrial Lots

The estimated traffic generated by existing industrial activities within the precinct is based on the indicative GFA's in Figure 8.3 below. Where the buildings were 2-storey factory/offices, the offices were conservatively assumed to take up only 40% of the total site area.

Figure 8.3: Existing Industrial Lots in the Concord West Precinct

Site	Warehouse GFA	AM and PM Trips	Office GFA	AM Trips	PM Trips
7 Concord Ave	5,500	27			
202-210 George St		-	1,340	21	16
204 George St	2,240	10			
180 George St	5,130	25	2,052	32	24
10 Rothwell Ave	440	2	176	3	2
10 Rothwell Ave	170	1			
8 Rothwell Ave	350	2			
4 Rothwell	560	3	224	4	3
4 Rothwell	510	3			
2A Rothwell	930	4			
2 Rothwell	1,500	7	400	7	5
9 George	1,900	10			
9 George	1,900	10			
Totals	21,130	106	4,192	67	50

Table 8.1: Trip Generation for Industrial Lots

Generation Rates:

Warehouse – 0.5 trips per 100m² GFA (AM and PM) Office – 1.6 trips per 100m² GFA (AM) and 1.2 trips per 100m² (PM)

All lots above were seen to be in operation to some degree, however, to remain conservative and take into account industrial lots that are not at their full use a reduction factor of 0.8 has been applied resulting in an overall trip generation of:

Warehouse – 106 x 0.8 = 85 trips (AM and PM) Office – 67 x 0.8 = 54 trips (AM); 50 x 0.8 = 40 trips (PM)

This estimated trip generation for the industrial developments has been subtracted from the total development traffic to account for the conversion of industrial zones to proposed residential zones.

8.2.4 Development Traffic Summary

The following table has been reproduced from the October 2020 TTPP Study to summarise the future traffic volumes that will be generated onto the road network by the proposed developments within the Concord West Precinct.

Land Use	Size	Trip	Rate	Trip Ger	neration
		AM Peak	PM Peak	AM Peak	PM Peak
Residential	1,465 units	0.19 per unit	0.15 per unit	278	220
Retail	40 parking spaces	2 per parking space	2 per parking space	80	80
Residential (2014 Masterplan)	679 units				
Within 400m catchment	543 units	0.19 per unit	0.15 per unit	103	81
Within 400m-800m catchment	136 units	0.25 per unit	0.28 per unit	34	38
Existing Industrial (to be deducted)					
Warehouse	21,130 sqm warehouse GFA	0.5 per 100m² GFA	0.5 per 100m² GFA	-85	-85
Office	4,192 sqm office GFA	1.6 per 100m² GFA	1.2 per 100m²GFA	-54	-40
Total				356	294

Tak

Based on the above, the overall Concord West Precinct is estimated to generate an additional 356 vehicle trips in the morning peak period and 294 vehicle trips in the evening peak period.

The total future traffic volumes (Existing + Background + Development) at the Pomeroy Street / George Street and Pomeroy Street / Queen Street / Beronga Street intersections are shown below in Figure 7.4 and Figure 7.5.

Figure 8.4: Existing + Background + Development AM Peak

Figure 8.5: Existing + Background + Development PM Peak

9 Proposed Pomeroy Street / George Street Intersection Upgrade

The SIDRA analysis conducted for the existing intersection of Pomeroy Street and George Street (Section 6.6) demonstrates that the Pomeroy Street / George Street intersection is operating at oversaturated conditions in the AM peak, particularly due to the right turn movements in both of the George Street approaches. It is clear then that this intersection in its current arrangement does not have any spare capacity to cater for the future growth in background traffic nor any future development traffic.

The development consent for the Victoria Avenue Primary School at Concord West has included the requirement for a left turn slip lane on the north-eastern corner of the intersection to cater for the additional traffic generated by the school.

As part of the current planning proposal, it is recommended that the corner property at 88 George Street be acquired to facilitate the construction of a left slip lane for eastbound traffic in Pomeroy Street turning left into George Street. (See Figure 9.1 below).

Figure 9.1: Location of proposed left slip lane within the property of No. 88 George Street Ultimately, the intention is to provide two left turn slip lanes adjacent to the northern leg of George Street.

Details of the proposed George Street/Pomeroy Street intersection upgrade plans prepared by BG&E are attached in Appendix C.

10 Traffic Assessment

The total future traffic volumes (Existing + Background + Development) outlined in Section 7.1.4 have been used in a Sidra model to assess the future operational performance of the Pomeroy Street / George Street and Pomeroy Street / Queen Street / Beronga Street intersections based on the upgrade options discussed in the previous section (two left turn slip lanes). Due to the close proximity of the two intersections (130 metres), they have been modelled as a network to ensure that the interaction between them is taken into consideration.

The existing limitations of the existing intersection arrangement make it clear that the proposed left turn slip lanes are essential to provide sufficient capacity for the estimated background growth as well as the additional traffic that will be generated by the future developments within the Concord West Precinct.

The results of the Sidra analysis are shown below in Table 9.1.

Scenario	Реак	Leg	LOS	Average delay (seconds)	95% queue (metres)	DOS
		George St (South)	F	263.3	330.8	1.448
		Pomeroy St (East)	В	21.4	130.7	0.671
	AM	George St (North)	D	56.5	91.5	0.909
		Pomeroy St (West	D	50.3	220.6	0.897
Pomeroy St /		Intersection	F	74.4	330.8	1.448
George st		George St (South)	С	34.9	101.0	0.684
Existing		Pomeroy St (East)	В	26.0	131.1	0.679
	PM	George St (North)	С	32.1	81.8	0.563
		Pomeroy St (West	С	30.8	156.7	0.792
		Intersection	С	29.9	156.7	0.684
		Queen St (South)	В	15.5	42.0	1.066
		Beronga St (East)	А	9.4	28.0	0.464
	AM	Queen St (North)	А	14.3	29.0	0.434
Pomeroy St /		Pomeroy St (West	А	10.2	28.8	0.648
Queen St Existing		Intersection	D	47.8	217.7	1.066
		Queen St (South)	А	12.7	46.7	0.670
		Beronga St (East)	А	10.9	26.2	0.400
	PM	Queen St (North)	В	23.0	32.5	0.346
		Pomeroy St (West	А	6.6	56.5	0.634
		Intersection	А	10.4	56.5	0.670
		George St (South)	С	36.1	116.6	0.752
		Pomeroy St (East)	С	30.6	144.5	0.818
Demoral (Ct. /	AM	George St (North)	С	30.2	87.0	0.873
Pomeroy St /		Pomeroy St (West	С	35.1	149.8	0.830
Evisting		Intersection	С	32.7	149.8	0.873
Background +		George St (South)	С	40.7	159.7	0.655
Development		Pomeroy St (East)	С	32.4	135.0	0.877
Development	PM	George St (North)	С	36.4	135.8	0.854
		Pomeroy St (West	С	32.6	144.4	0.591
		Intersection	С	34.7	159.7	0.877
	AM	Queen St (South)	F	135.0	372.2	1.105
		Beronga St (East)	С	31.0	99.3	0.768
Domorou St /		Queen St (North)	В	27.3	48.5	0.512
Pomeroy St /		Pomeroy St (West	А	6.5	90.8	0.740
Evisting		Intersection	С	42.3	372.2	1.105
Background +	PM	Queen St (South)	D	54.9	232.1	0.999
Development		Beronga St (East)	А	11.0	33.3	0.514
Bevelopment		Queen St (North)	В	26.5	24.9	0.283
		Pomeroy St (West	A	6.5	84.9	0.720
		Intersection	В	22.1	232.1	0.999

Table 10.1: SIDRA Summaries

The modelling results in Table 10.1show significant improvements in the operational performance of the Pomeroy Street / George Street intersection particularly in the AM peak period where the intersection level of service improved from F to C, the 95% queue length reduced by more than 50% from 308.8 metres to 149.8 metres and the degree of saturation decreased from 1.448 (oversaturated conditions) to 0.873. While this degree of saturation (0.873) indicates that the intersection is almost at capacity, it should be noted that the traffic volumes used in the analysis are very conservative and are considered to be the worst-case scenario.

The improvements in operational performance at the Pomeroy Street / George street intersection are dependent on the future provision of the proposed left turn slip lanes discussed in Section 8 of this report. There will also need to be extensions to the existing No Stopping restrictions on all approaches during the morning and afternoon peak periods, particularly along the northern side of Pomeroy Street west of the intersection, where a No Stopping distance of 200 metres will be required. It is acknowledged that extensive No Stopping restrictions may be unpalatable for the affected residents, however, these restrictions will only need to apply during peak periods and unrestricted parking will still be available for a major part of each weekday and on weekends.

The extent of peak period parking restrictions is shown in Figure 10.1 below.

Figure 10.1: Pomeroy Street / George Street - Proposed intersection arrangement

The only adverse impact indicated in the modelling for the future scenario is the Queen Street (South) approach at the Pomeroy Street / Queen Street / Beronga Street intersection during the AM peak. The modelling indicates that this approach will be oversaturated and operate at a level of service F with a 95% queue length of 372 metres.

A traffic queue of this length would extend south to Shipley Avenue and potentially cause blockages at Waratah Street and Wellbank Street. However, due to the availability of alternative routes to Pomeroy Street it is likely that a queue of this magnitude will not eventuate. For example, drivers accessing Queen Street from Concord Road could choose to continue north to Correys Avenue and Gracemere Street to access Pomeroy Street from the north (see Figure 10.2 below). It is noted that the Queen Street (North) approach to the Pomeroy Street intersection is predicted to operate at a level of service B in the AM peak with a 95% queue of only 48.5 metres and a degree of saturation of 0.514, which indicates that there is ample spare capacity on this approach to cater for a reassignment of traffic from the Queen Street (South) approach.

Figure 10.2: Alternative route to Pomeroy Street from the south

11 Conclusions/recommendations

This report has been prepared in accordance with the *RMS Guide to Traffic Generating Developments* and the *RMS Traffic Modelling Guidelines* to identify the volume of additional traffic that will be generated by a new master-planned neighbourhood to be known as "Parkside" and the other potential developments within the Concord West precinct and to assess the impact of this additional traffic on the surrounding local road network.

The site of this new master-planned neighbourhood is a 6.8 hectare site bounded by Homebush Bay Drive in the west, the northern rail line in the east, Concord Avenue in the north and the Westpac Service Centre at 1 King Street in the south,

The Concord West Precinct is well connected to public transport, with rail and bus connections located within the precinct or an easy walking distance from the precinct. Concord West railway station is located on the eastern boundary of the precinct and is easily accessible by pedestrians via a full width concrete path paving.

Sustainable transport initiatives, including the development and implementation of a Green Travel Plan, will encourage the future residents and staff of future businesses to make greater use of public transport, cycling walking and car sharing for commuting and work-related journeys.

The proposed Concord West Precinct works includes extensive upgrades to the existing pedestrian and cycleway network to complement the existing footpaths and pedestrian crossings. These upgrades include the creation of a shared zone and an improved connection to the Concord West train station and rail underpass.

The Parking Assessment for the precinct has concluded that a maximum of 1,375 spaces should be provided in the Concord West Precinct consisting of 1,187 residential, 152 visitor and 40 retail spaces.

Based on intersection traffic surveys conducted in May 2018, The Pomeroy Street / George Street and Pomeroy Street / Queen Street / Beronga Street intersections, SIDRA modelling shows that the Pomeroy Street / George Street intersection is operating at oversaturated conditions in the AM peak, particularly due to the right turn movements in both of the George Street approaches.

Proposed George Street / Pomeroy intersection works include two left turn slip lanes to and from the northern leg and additional peak hour parking restrictions. These proposed works will increase the capacity of the intersection to cater for the additional traffic that will be generated by the future growth in background traffic over a 10 year timeframe as well as the additional traffic that will be generated by redevelopment within the Concord West Precinct.

12 References

Canada Bay DCP 2017

Roads and Maritime Services, 'Guide to Traffic Generating Developments', Version 2.2 dated October 2002.

Roads and Maritime Services, 'Technical Direction – Guide to Traffic Generating Developments – Updated Traffic Surveys', Version TDT 2013/04a dated August 2013.

NSW Department of Planning, 'SEPP (Infrastructure) 2007'.

Canada Bay Local Planning Strategy 2010 - Part 5 Transport and Access

Concord West Transport Report (by GTA)

Strategic Review of the Canada Bay Bike Plan

The City of Canada Bay Local Strategic Planning Statement 2020

Eastern City District Plan

Greater Sydney Region Plan

Appendix A Traffic Counts

Job No.	: N4225
Client	: BRS
Suburb	: Pomeroy St
Location	: 1. Pomeroy St / George St
Day/Date	: Thu, 31st May 2018
Weather	: Fine
Description	: Classified Intersection Count
	: Pedestrian Data

Di	Direction					Pedes	trians			
Tim	e Pe	riod	Α	В	с	D	E	F	G	н
8:00	to	8:15	11	13	27	1	4	1	0	5
8:15	to	8:30	4	13	33	2	2	0	0	3
8:30	to	8:45	6	8	22	4	1	1	4	4
8:45	to	9:00	2	8	22	2	0	0	5	6
9:00	to	9:15	4	2	18	4	0	0	3	0
9:15	to	9:30	1	5	7	5	0	0	4	3
9:30	to	9:45	1	6	12	3	0	0	1	4
9:45	to	10:00	2	4	12	7	0	4	0	2
AN	/I Tot	als	31	59	153	28	7	6	17	27
16:00	to	16:15	10	3	3	6	0	0	1	0
16:15	to	16:30	3	1	1	5	0	0	7	1
16:30	to	16:45	9	5	3	20	0	0	0	1
16:45	to	17:00	7	7	4	11	0	0	2	1
17.00										
17.00	to	17:15	2	7	8	10	0	0	3	0
17:15	to to	17:15 17:30	2 5	7 2	8 7	10 16	0	0	3	0
17:15 17:30	to to to	17:15 17:30 17:45	2 5 3	7 2 2	8 7 5	10 16 17	0 0 1	0 0 0	3 3 2	0 2 0
17:15 17:30 17:45	to to to to	17:15 17:30 17:45 18:00	2 5 3 8	7 2 2 2 2	8 7 5 4	10 16 17 24	0 0 1 0	0 0 0 3	3 3 2 2	0 2 0 2

: N4225

Job No.

Dir	recti	on				Pedes	trians			
Time	e Pe	riod	А	В	С	D	E	F	G	н
8:00	8:00 to 8:15		0	0	6	1	1	2	0	0
8:15	to	8:30	0	0	5	0	0	0	0	0
8:30	to	8:45	3	1	2	0	5	3	0	0
8:45	to	9:00	0	3	3	0	9	1	0	0
9:00	to	9:15	0	0	1	0	3	4	0	0
9:15	to	9:30	0	0	3	0	3	1	0	0
9:30	to	9:45	2	0	0	0	1	0	0	0
9:45	to	10:00	0	2	0	0	0	6	0	0
AN	1 Tot	als	5	6	20	1	22	17	0	0
16:00	to	16:15	0	0	2	1	0	1	0	0
16:15	to	16:30	1	0	1	0	3	3	0	0
16:30	to	16:45	0	0	1	1	0	3	0	0
16:45	to	17:00	0	0	0	3	2	0	0	0
17:00	to	17:15	0	1	0	2	2	0	0	0
17:15	to	17:30	0	2	3	4	0	0	0	0
17:30	to	17:45	0	0	0	0	4	0	2	0
17:45	to	18:00	1	0	0	3	0	0	0	0
PN	1 Tot	als	2	3	7	14	11	7	2	0

Appendix B SCATS History File

Report: Periodic statistics for site 1181

15 minute intervals From 12:00:00 AM to 11:59:59 PM, on 31 May 2018

Period: 12:00:00 AM to 12:15:00 AM

Data	Freq.	Min	Max	Avg	Total
? phase	1	147	147	147	147
A phase	9	15	166	72	652
C phase	9	7	13	11	101

Period: 12:15:00 AM to 12:30:00 AM

Data	Freq.	Min	Max	Avg	Total
A phase	13	12	185	54	708
B phase	1	14	14	14	14
C phase	13	6	22	13	178
Ped 4	3				

Period: 12:30:00 AM to 12:45:00 AM

Data	Freq.	Min	Max	Avg	Total
A phase	8	13	241	102	818
C phase	7	11	14	11	82

Period: 12:45:00 AM to 1:00:00 AM

Data	Freq.	Min	Max	Avg	Total
A phase	10	13	214	78	788
C phase	9	11	15	12	112

Period: 1:00:00 AM to 1:15:00 AM

Data	Freq.	Min	Max	Avg	Total
A phase	6	13	242	140	840
C phase	5	12	12	12	60

Period: 1:15:00 AM to 1:30:00 AM

Data	Freq.	Min	Max	Avg	Total
A phase	3	39	600	292	877
C phase	2	11	12	11	23

Period: 1:30:00 AM to 1:45:00 AM

Data	Freq.	Min	Max	Avg	Total
A phase	4	47	365	216	866
C phase	3	11	12	11	34

Period: 1:45:00 AM to 2:00:00 AM

Data	Freq.	Min	Max	Avg	Total
A phase	9	25	180	89	804
C phase	8	11	13	12	96

Period: 2:00:00 AM to 2:15:00 AM

Data	Freq.	Min	Max	Avg	Total
A phase	7	16	379	116	817

Ped 1	1		
Ped 2	5		
Ped 3	3		
Ped 4	10		

Period: 8:00:00 AM to 8:15:00 AM

Data	Freq.	Min	Max	Avg	Total
A phase	11	29	68	42	469
B phase	6	14	19	15	91
C phase	11	21	44	30	340
Ped 1	3				
Ped 2	9				
Ped 3	2				
Ped 4	10				

Period: 8:15:00 AM to 8:30:00 AM

Data	Freq.	Min	Max	Avg	Total
A phase	9	12	77	56	505
B phase	4	13	20	16	65
C phase	8	28	71	41	330
Ped 1	2				
Ped 2	6				
Ped 3	3				
Ped 4	6				

Period: 8:30:00 AM to 8:45:00 AM

Data	Freq.	Min	Max	Avg	Total
A phase	7	1	77	54	382
B phase	5	15	26	18	94
C phase	6	68	72	70	424
Ped 1	6				
Ped 2	4				
Ped 3	3				
Ped 4	6				

Period: 8:45:00 AM to 9:00:00 AM

Data	Freq.	Min	Max	Avg	Total
A phase	7	36	77	61	427
B phase	6	13	29	20	124
C phase	6	41	72	58	349
Ped 1	4				
Ped 2	5				
Ped 3	6				
Ped 4	5				

Period: 9:00:00 AM to 9:15:00 AM

Data	Freq.	Min	Max	Avg	Total
A phase	11	17	77	37	414
B phase	8	13	19	15	124
C phase	10	21	63	36	362
Ped 1	2				
Ped 2	5				
Ped 3	3				
Ped 4	8				

Period: 4:30:00 PM to 4:45:00 PM

Data	Freq.	Min	Max	Avg	Total
A phase	9	27	76	47	423
B phase	6	13	25	15	95
C phase	9	8	72	42	382
Ped 2	7				
Ped 3	1				
Ped 4	6				

Period: 4:45:00 PM to 5:00:00 PM

Data	Freq.	Min	Max	Avg	Total
A phase	8	32	76	48	390
B phase	6	13	27	20	121
C phase	7	45	71	55	389
Ped 2	5				
Ped 3	3				
Ped 4	4				

Period: 5:00:00 PM to 5:15:00 PM

Data	Freq.	Min	Max	Avg	Total
A phase	7	18	66	48	341
B phase	7	14	22	18	130
C phase	7	35	72	61	429
Ped 2	4				
Ped 3	1				
Ped 4	6				

Period: 5:15:00 PM to 5:30:00 PM

Data	Freq.	Min	Max	Avg	Total
A phase	8	32	57	45	366
B phase	7	4	20	14	103
C phase	7	35	72	61	431
Ped 1	1				
Ped 2	2				
Ped 3	3				
Ped 4	4				

Period: 5:30:00 PM to 5:45:00 PM

Data	Freq.	Min	Max	Avg	Total
A phase	8	7	77	49	395
B phase	6	13	23	16	100
C phase	8	18	71	50	405
Ped 1	2				
Ped 2	3				
Ped 3	3				
Ped 4	7				

Period: 5:45:00 PM to 6:00:00 PM

Data Freq.		Min	Max	Avg	Total					
A phase	6	38	76	64	388					
B phase	5	13	22	17	88					
C phase	7	14	72	60	424					
Ped 1	1									
Ped 2	4									
Ped 3	2									

Appendix C Intersection Upgrade Plan

ort M aritime 5	INTERSECTION OF GEORGE AND PO INSTALLATION OF TWO SL GENERAL ARRANGEMENT	MEROY STREET, N IP LANES PLAN	TH STRATHFIELD	AJ
	RMS REGISTRATION No. DSxxxx/xx	XXXX		PART 1
	ISSUE STATUS	EDMS No.	SHEET No.	ISSUE
	CONCEPT DESIGN	SFxxxx/xxxxxx	C-0010	0
		Deedee	nd Maritima Ca	-

Appendix D Sidra Movement Summaries

Site: 101 [Pomeroy George - AM Base]

♦♦ Network: N101 [Pomeroy AM Base]

Pomeroy George - AM Base

Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Mov	ement	Perform	ance	- Vehi	cles									
Mov	Turn	Demand	Flows	Arrival	Flows	Deg.	Average	Level of	95% Ba	ack of	Prop.	Effective	Aver.	Averag
UI		Total	н٧	Total	нν	Sath	Delay	Service	Que Vehicles I	UE Distance	Queued	Stop Rate	INO. Cycles !	e Sneed
		veh/h	%	veh/h	%	v/c	sec		venieies i veh	m		Trate	Cycles .	km/h
South	n: Geor	ge Street												
1	L2	78	0.0	78	0.0	0.323	35.8	LOS C	9.1	63.5	0.79	0.70	0.79	32.4
2	T1	137	0.0	137	0.0	1.448	43.1	LOS D	47.3	330.8	0.79	0.74	0.86	30.9
3	R2	241	0.0	241	0.0	1.448	461.8	LOS F	47.3	330.8	1.00	2.10	3.57	3.6
Appro	bach	456	0.0	456	0.0	1.448	263.3	LOS F	47.3	330.8	0.90	1.45	2.28	8.0
East:	Pome	roy Street												
4	L2	523	0.0	523	0.0	0.513	22.0	LOS B	18.7	130.7	0.67	0.77	0.67	33.6
5	T1	531	0.0	531	0.0	0.671	17.1	LOS B	18.7	130.6	0.66	0.58	0.66	33.6
6	R2	127	0.0	127	0.0	0.351	37.2	LOS C	5.7	39.9	0.84	0.78	0.84	27.5
Appro	bach	1181	0.0	1181	0.0	0.671	21.4	LOS B	18.7	130.7	0.68	0.69	0.68	32.7
North	: Geor	ge Street												
7	L2	143	0.0	143	0.0	0.226	34.6	LOS C	5.9	41.5	0.75	0.75	0.75	25.9
8	T1	123	0.0	123	0.0	0.909	71.4	LOS F	13.1	91.5	1.00	1.09	1.44	25.1
9	R2	66	0.0	66	0.0	0.909	75.9	LOS F	13.1	91.5	1.00	1.09	1.44	22.8
Appro	bach	333	0.0	333	0.0	0.909	56.5	LOS D	13.1	91.5	0.89	0.94	1.15	24.7
West	: Pome	roy Street												
10	L2	227	0.0	227	0.0	0.897	48.1	LOS D	31.5	220.6	0.82	0.91	1.03	28.6
11	T1	431	0.0	431	0.0	0.897	48.4	LOS D	31.5	220.6	0.83	0.94	1.11	16.9
12	R2	74	0.0	74	0.0	0.897	68.2	LOS E	11.6	81.3	0.86	1.03	1.34	24.1
Appro	bach	732	0.0	732	0.0	0.897	50.3	LOS D	31.5	220.6	0.83	0.94	1.11	22.2
All Ve	ehicles	2701	0.0	2701	0.0	1.448	74.4	LOS F	47.3	330.8	0.78	0.92	1.12	18.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Bacl Pedestrian ped	k of Queue Distance m	Prop. Queued	Effective Stop Rate				
P1	South Full Crossing	68	16.6	LOS B	0.1	0.1	0.53	0.53				
P2	East Full Crossing	119	35.4	LOS D	0.3	0.3	0.77	0.77				
P3	North Full Crossing	9	23.4	LOS C	0.0	0.0	0.63	0.63				
P4	West Full Crossing	28	33.0	LOS D	0.1	0.1	0.74	0.74				
All Pe	destrians	225	28.9	LOS C			0.69	0.69				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 101 [Pomeroy George - AM Base + Growth + Devt]

Pomeroy George - AM Base + Growth + Devt Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Move	Movement Performance - Vehicles													
Mov	Turn	Demand I	Flows	Arrival F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective A	ver. No.A	verage
ID		Total	ΗV	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles S	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	i: Geor	ge Street												
1	L2	164	0.0	164	0.0	0.256	29.5	LOS C	7.5	52.4	0.70	0.72	0.70	33.8
2	T1	141	0.0	141	0.0	0.752	34.7	LOS C	16.6	116.1	0.84	0.81	0.88	33.0
3	R2	219	0.0	219	0.0	0.752	42.1	LOS C	16.6	116.1	0.88	0.83	0.94	24.0
Appro	bach	524	0.0	524	0.0	0.752	36.1	LOS C	16.6	116.1	0.81	0.79	0.85	30.0
East:	Pomer	oy Street												
4	L2	461	0.0	437	0.0	0.486	26.2	LOS B	16.9	118.1	0.72	0.78	0.72	31.7
5	T1	520	0.0	492	0.0	0.784	24.8	LOS B	20.6	144.5	0.74	0.68	0.78	29.3
6	R2	209	0.0	198	0.0	0.818	54.6	LOS D	11.6	81.0	0.97	0.93	1.20	23.0
Appro	bach	1191	0.0	<mark>1127</mark> N1	0.0	0.818	30.6	LOS C	20.6	144.5	0.77	0.77	0.83	28.7
North	: Georg	ge Street												
7	L2	382	0.0	382	0.0	0.444	13.8	LOS A	8.7	61.2	0.65	0.74	0.65	36.6
8	T1	226	0.0	226	0.0	0.873	25.5	LOS B	12.4	87.0	0.71	0.60	0.72	37.1
9	R2	183	0.0	183	0.0	0.873	70.1	LOS E	12.4	87.0	1.00	1.02	1.36	23.4
Appro	bach	792	0.0	792	0.0	0.873	30.2	LOS C	12.4	87.0	0.75	0.76	0.83	31.9
West:	Pome	roy Street												
10	L2	321	0.0	321	0.0	0.359	13.8	LOS A	6.8	47.6	0.62	0.72	0.62	41.1
11	T1	566	0.0	566	0.0	0.830	42.3	LOS C	21.4	149.8	0.87	0.87	1.02	18.8
12	R2	113	0.0	113	0.0	0.830	60.1	LOS E	16.4	114.7	1.00	0.99	1.20	25.7
Appro	bach	1000	0.0	1000	0.0	0.830	35.1	LOS C	21.4	149.8	0.81	0.83	0.91	27.1
All Ve	hicles	3506	0.0	<mark>3443</mark> N1	0.0	0.873	32.7	LOS C	21.4	149.8	0.78	0.79	0.86	29.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate				
P1	South Full Crossing	68	21.1	LOS C	0.1	0.1	0.59	0.59				
P2	East Full Crossing	119	29.5	LOS C	0.3	0.3	0.70	0.70				
P3	North Full Crossing	9	28.7	LOS C	0.0	0.0	0.69	0.69				
P4	West Full Crossing	26	27.4	LOS C	0.1	0.1	0.68	0.68				

Site: 101 [Pomeroy George PM Base]

中 Network: N101 [Pomeroy PM Base]

Pomeroy George PM Base

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Move	ovement Performance - Vehicles													
Mov	Turn	Demand	Flows	Arrival	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective A	ver. No.A	verage
ID		Total	ΗV	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles S	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	: Geor	ge Street												
1	L2	89	0.0	89	0.0	0.153	27.7	LOS B	4.3	30.2	0.66	0.67	0.66	34.7
2	T1	78	0.0	78	0.0	0.684	29.9	LOS C	14.4	101.0	0.79	0.75	0.79	34.3
3	R2	254	0.0	254	0.0	0.684	38.9	LOS C	14.4	101.0	0.87	0.81	0.87	24.7
Appro	ach	421	0.0	421	0.0	0.684	34.9	LOS C	14.4	101.0	0.81	0.77	0.81	29.2
East:	Pomer	oy Street												
4	L2	300	0.0	300	0.0	0.407	25.8	LOS B	13.5	94.5	0.69	0.74	0.69	32.2
5	T1	536	0.0	536	0.0	0.679	22.4	LOS B	18.7	131.1	0.73	0.66	0.73	30.3
6	R2	139	0.0	139	0.0	0.411	40.6	LOS C	6.5	45.4	0.83	0.78	0.83	26.5
Appro	ach	975	0.0	975	0.0	0.679	26.0	LOS B	18.7	131.1	0.73	0.70	0.73	30.2
North	: Georg	je Street												
7	L2	162	0.0	162	0.0	0.209	28.3	LOS B	6.0	41.9	0.68	0.73	0.68	28.4
8	T1	123	0.0	123	0.0	0.563	32.2	LOS C	11.7	81.8	0.83	0.75	0.83	34.0
9	R2	134	0.0	134	0.0	0.563	36.7	LOS C	11.7	81.8	0.83	0.75	0.83	31.8
Appro	ach	419	0.0	419	0.0	0.563	32.1	LOS C	11.7	81.8	0.77	0.75	0.77	31.6
West:	Pome	roy Street												
10	L2	86	0.0	86	0.0	0.792	30.6	LOS C	22.4	156.7	0.76	0.73	0.80	34.6
11	T1	613	0.0	613	0.0	0.792	29.8	LOS C	22.4	156.7	0.77	0.75	0.85	22.8
12	R2	53	4.0	53	4.0	0.792	43.1	LOS D	11.7	82.8	0.79	0.81	0.96	30.2
Appro	ach	752	0.3	752	0.3	0.792	30.8	LOS C	22.4	156.7	0.77	0.75	0.85	25.5
All Ve	hicles	2566	0.1	2566	0.1	0.792	29.9	LOS C	22.4	156.7	0.76	0.73	0.79	29.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestria	ns						
Mov	Description	Demand	Average	Level of	Average Back	ofQueue	Prop.	Effective
D	Description	Flow ped/h	Delay sec	Service	Pedestrian ped	Distance m	Queued	Stop Rate
P1	South Full Crossing	46	21.6	LOS C	0.1	0.1	0.60	0.60
P2	East Full Crossing	83	28.8	LOS C	0.2	0.2	0.69	0.69
P3	North Full Crossing	1	21.6	LOS C	0.0	0.0	0.60	0.60
P4	West Full Crossing	13	26.7	LOS C	0.0	0.0	0.67	0.67
All Peo	lestrians	143	26.2	LOS C			0.66	0.66

Site: 101 [Pomeroy George PM Base + Growth + Development]

Interpretation of the second secon

Pomeroy George PM Base + Growth + Development Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Move	Iovement Performance - Vehicles Jov Turn Demand Flows Arrival Flows Deg. Average Level of 95% Back of Queue Prop. Effective Aver. No.Average													
Mov	Turn	Demand F	lows	Arrival	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective A	Aver. No.A	verage
ID		Iotal	ΗV	Iotal	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles S	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		Tate		km/h
South	n: Geor	ge Street												
1	L2	177	0.0	177	0.0	0.242	34.8	LOS C	8.0	55.8	0.71	0.75	0.71	31.7
2	T1	143	0.0	143	0.0	0.655	40.5	LOS C	22.8	159.7	0.90	0.82	0.90	31.4
3	R2	257	0.0	257	0.0	0.655	45.0	LOS D	22.8	159.7	0.90	0.82	0.90	23.1
Appro	bach	577	0.0	577	0.0	0.655	40.7	LOS C	22.8	159.7	0.84	0.80	0.84	28.4
East:	Pomer	oy Street												
4	L2	231	0.0	231	0.0	0.417	26.2	LOS B	16.6	116.4	0.66	0.69	0.66	32.6
5	T1	588	0.0	588	0.0	0.695	21.6	LOS B	16.9	118.1	0.66	0.61	0.66	30.6
6	R2	292	0.0	292	0.0	0.877	59.2	LOS E	19.3	135.0	0.81	0.93	1.07	22.0
Appro	bach	1111	0.0	1111	0.0	0.877	32.4	LOS C	19.3	135.0	0.70	0.71	0.77	27.7
North	: Georg	je Street												
7	L2	265	0.0	265	0.0	0.319	9.7	LOS A	3.9	27.4	0.45	0.66	0.45	39.8
8	T1	134	0.0	134	0.0	0.175	29.3	LOS C	5.8	40.9	0.69	0.57	0.69	35.8
9	R2	264	0.0	264	0.0	0.854	66.8	LOS E	19.4	135.8	0.98	0.97	1.20	24.0
Appro	bach	663	0.0	663	0.0	0.854	36.4	LOS C	19.4	135.8	0.71	0.76	0.80	29.9
West	Pome	roy Street												
10	L2	272	0.0	272	0.0	0.591	38.6	LOS C	15.6	109.5	0.78	0.76	0.78	31.1
11	T1	620	0.0	620	0.0	0.591	29.5	LOS C	20.5	144.4	0.77	0.69	0.77	23.1
12	R2	87	2.4	87	2.4	0.591	36.0	LOS C	20.5	144.4	0.81	0.74	0.81	32.5
Appro	bach	979	0.2	979	0.2	0.591	32.6	LOS C	20.5	144.4	0.78	0.71	0.78	27.3
All Ve	hicles	3329	0.1	3329	0.1	0.877	34.7	LOS C	22.8	159.7	0.75	0.74	0.79	28.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestri	ans						
Mov	Description	Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
ID	Description	Flow ped/h	Delay sec	Service	Pedestrian ped	Distance m	Queued	Stop Rate
P1	South Full Crossing	43	21.2	LOS C	0.1	0.1	0.55	0.55
P2	East Full Crossing	65	34.4	LOS D	0.2	0.2	0.70	0.70
P3	North Full Crossing	1	21.2	LOS C	0.0	0.0	0.55	0.55
P4	West Full Crossing	16	32.3	LOS D	0.0	0.0	0.68	0.68
All Pec	lestrians	125	29.5	LOS C			0.65	0.65

V Site: PQ [Pomeroy Queen - AM Base]

₱₱ Network: N101 [Pomeroy AM Base]

Pomeroy Queen - AM Base Site Category: (None) Roundabout

Move	ovement Performance - Vehicles													
Mov	Turn	Demand F	lows	Arrival	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective A	ver. No.A	verage
ID		Total	ΗV	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop	Cycles S	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		Rale		km/h
South	: Quee	n Street												
1	L2	388	0.0	388	0.0	0.648	15.5	LOS B	6.0	42.0	0.90	1.08	1.24	26.9
2	T1	5	0.0	5	0.0	0.648	14.3	LOS A	6.0	42.0	0.90	1.08	1.24	34.8
3	R2	7	0.0	7	0.0	0.648	18.5	LOS B	6.0	42.0	0.90	1.08	1.24	36.4
Appro	bach	401	0.0	401	0.0	0.648	15.5	LOS B	6.0	42.0	0.90	1.08	1.24	27.3
East:	Berong	ja Street												
4	L2	3	0.0	3	0.0	0.464	8.8	LOS A	4.0	28.0	0.88	0.78	0.88	43.3
5	T1	362	0.0	362	0.0	0.464	9.4	LOS A	4.0	28.0	0.88	0.78	0.88	35.5
6	R2	1	0.0	1	0.0	0.464	14.1	LOS A	4.0	28.0	0.88	0.78	0.88	43.0
Appro	bach	366	0.0	366	0.0	0.464	9.4	LOS A	4.0	28.0	0.88	0.78	0.88	35.6
North	: Quee	n Street												
7	L2	9	0.0	9	0.0	0.434	11.7	LOS A	4.1	29.0	0.84	0.73	0.84	34.6
8	T1	33	0.0	33	0.0	0.434	10.6	LOS A	4.1	29.0	0.84	0.73	0.84	37.0
9	R2	293	0.0	293	0.0	0.434	14.8	LOS B	4.1	29.0	0.84	0.73	0.84	25.4
Appro	bach	335	0.0	335	0.0	0.434	14.3	LOS A	4.1	29.0	0.84	0.73	0.84	27.3
West:	Pome	roy Street												
10	L2	181	0.0	181	0.0	0.457	3.5	LOS A	4.1	28.8	0.10	0.53	0.10	43.8
11	T1	252	0.0	252	0.0	0.457	4.1	LOS A	4.1	28.8	0.10	0.53	0.10	47.0
12	R2	339	0.0	339	0.0	0.457	8.8	LOS A	4.1	28.8	0.10	0.53	0.10	47.8
Appro	bach	772	0.0	772	0.0	0.457	6.0	LOS A	4.1	28.8	0.10	0.53	0.10	46.6
All Ve	hicles	1874	0.0	1874	0.0	0.648	10.2	LOS A	6.0	42.0	0.56	0.73	0.63	36.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BARKER RYAN STEWART | Processed: Wednesday, 3 February 2021 9:02:59 AM Project: \\brs.local\Data\Business\Norwest\Synergy\Projects\SY16\SY160252\Planning & Engineering\BRS Documentation\Reports\Sidra 2021 \Pomeroy Network AM 2021.sip8

Site: PQ [Pomeroy Queen - AM base + Growth + Devt]

Pomeroy Queen - AM base + Growth + Devt Site Category: (None) Roundabout

Move	wement Performance - Vehicles													
Mov	Turn	Demand	Flows	Arrival	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective A	Aver. No.A	verage
ID		Total	HV	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop	Cycles S	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		Rate		km/h
South	n: Quee	n Street												
1	L2	532	0.0	532	0.0	1.105	135.1	LOS F	53.2	372.2	1.00	3.13	6.53	5.1
2	T1	27	0.0	27	0.0	1.105	133.9	LOS F	53.2	372.2	1.00	3.13	6.53	8.1
3	R2	7	0.0	7	0.0	1.105	138.1	LOS F	53.2	372.2	1.00	3.13	6.53	9.2
Appro	bach	566	0.0	566	0.0	1.105	135.0	LOS F	53.2	372.2	1.00	3.13	6.53	5.3
East:	Berong	ja Street												
4	L2	20	0.0	20	0.0	0.782	30.4	LOS C	15.3	107.2	1.00	1.26	1.85	26.9
5	T1	491	0.0	491	0.0	0.782	31.0	LOS C	15.3	107.2	1.00	1.26	1.85	18.3
6	R2	1	0.0	1	0.0	0.782	35.7	LOS C	15.3	107.2	1.00	1.26	1.85	25.2
Appro	bach	512	0.0	512	0.0	0.782	31.0	LOS C	15.3	107.2	1.00	1.26	1.85	18.7
North	: Quee	n Street												
7	L2	4	0.0	4	0.0	0.512	24.7	LOS B	6.9	48.5	1.00	0.73	1.00	26.0
8	T1	27	0.0	27	0.0	0.512	23.5	LOS B	6.9	48.5	1.00	0.73	1.00	27.3
9	R2	217	0.0	217	0.0	0.512	27.8	LOS B	6.9	48.5	1.00	0.73	1.00	16.7
Appro	bach	248	0.0	248	0.0	0.512	27.3	LOS B	6.9	48.5	1.00	0.73	1.00	18.4
West	: Pomei	roy Street												
10	L2	225	0.0	225	0.0	0.740	3.8	LOS A	13.0	90.8	0.26	0.51	0.26	42.4
11	T1	402	0.0	402	0.0	0.740	4.4	LOS A	13.0	90.8	0.26	0.51	0.26	45.6
12	R2	574	0.0	574	0.0	0.740	9.1	LOS A	13.0	90.8	0.26	0.51	0.26	46.3
Appro	bach	1201	0.0	1201	0.0	0.740	6.5	LOS A	13.0	90.8	0.26	0.51	0.26	45.4
All Ve	hicles	2527	0.0	2527	0.0	1.105	42.3	LOS C	53.2	372.2	0.65	1.27	2.06	17.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BARKER RYAN STEWART | Processed: Thursday, 4 February 2021 3:34:47 PM Project: C:\Users\robert\Documents\Pomeroy\Revised Feb 2021\Pomeroy Network AM 2021.sip8

♥ Site: PQ [Pomeroy Queen PM base]

♦♦ Network: N101 [Pomeroy PM Base]

Pomeroy Queen PM base Site Category: (None) Roundabout

Move	ovement Performance - Vehicles													
Mov	Turn	Demand I	lows	Arrival	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective A	Aver. No.A	verage
ID		Total	ΗV	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop	Cycles S	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		Rale		km/h
South	n: Quee	n Street												
1	L2	474	0.0	474	0.0	0.670	12.7	LOS A	6.7	46.7	0.86	0.97	1.11	30.0
2	T1	16	0.0	16	0.0	0.670	11.5	LOS A	6.7	46.7	0.86	0.97	1.11	37.8
3	R2	9	0.0	9	0.0	0.670	15.7	LOS B	6.7	46.7	0.86	0.97	1.11	39.1
Appro	bach	499	0.0	499	0.0	0.670	12.7	LOS A	6.7	46.7	0.86	0.97	1.11	30.6
East:	Berong	ja Street												
4	L2	12	0.0	12	0.0	0.400	10.3	LOS A	3.7	26.2	0.91	0.76	0.91	41.7
5	T1	298	0.0	298	0.0	0.400	10.9	LOS A	3.7	26.2	0.91	0.76	0.91	33.4
6	R2	1	0.0	1	0.0	0.400	15.6	LOS B	3.7	26.2	0.91	0.76	0.91	41.1
Appro	bach	311	0.0	311	0.0	0.400	10.9	LOS A	3.7	26.2	0.91	0.76	0.91	33.9
North	: Quee	n Street												
7	L2	4	0.0	4	0.0	0.346	20.7	LOS B	4.6	32.5	1.00	0.70	1.00	28.2
8	T1	32	0.0	32	0.0	0.346	19.5	LOS B	4.6	32.5	1.00	0.70	1.00	29.8
9	R2	169	0.0	169	0.0	0.346	23.7	LOS B	4.6	32.5	1.00	0.70	1.00	18.8
Appro	bach	205	0.0	205	0.0	0.346	23.0	LOS B	4.6	32.5	1.00	0.70	1.00	21.2
West	Pome	roy Street												
10	L2	139	0.0	139	0.0	0.634	3.6	LOS A	8.1	56.5	0.19	0.53	0.19	42.5
11	T1	356	0.0	356	0.0	0.634	4.2	LOS A	8.1	56.5	0.19	0.53	0.19	45.7
12	R2	548	0.0	548	0.0	0.634	8.9	LOS A	8.1	56.5	0.19	0.53	0.19	46.4
Appro	bach	1043	0.0	1043	0.0	0.634	6.6	LOS A	8.1	56.5	0.19	0.53	0.19	45.7
All Ve	hicles	2058	0.0	2058	0.0	0.670	10.4	LOS A	8.1	56.5	0.54	0.69	0.60	37.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BARKER RYAN STEWART | Processed: Wednesday, 3 February 2021 9:47:25 AM Project: \\brs.local\Data\Business\Norwest\Synergy\Projects\SY16\SY160252\Planning & Engineering\BRS Documentation\Reports\Sidra 2021 \Pomeroy Network PM 2021.sip8

Site: PQ [Pomeroy Queen PM base + Growth + Development] + Network: N101 [Pomeroy PM Base + Growth + Development]

Pomeroy Queen PM Base + Growth + Development Site Category: (None) Roundabout

Move	ement	Performa	nce -	Vehic	les									
Mov	Turn	Demand	Flows	Arrival	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective A	Aver. No.A	verage
ID		Total	ΗV	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop	Cycles S	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		Rale		km/h
South	n: Quee	n Street												
1	L2	660	0.0	660	0.0	0.999	54.9	LOS D	33.2	232.1	1.00	1.93	3.47	11.2
2	T1	15	0.0	15	0.0	0.999	53.7	LOS D	33.2	232.1	1.00	1.93	3.47	16.7
3	R2	12	0.0	12	0.0	0.999	57.9	LOS E	33.2	232.1	1.00	1.93	3.47	18.5
Appro	bach	686	0.0	686	0.0	0.999	54.9	LOS D	33.2	232.1	1.00	1.93	3.47	11.5
East:	Berong	ga Street												
4	L2	15	0.0	15	0.0	0.514	10.4	LOS A	4.8	33.3	0.90	0.80	0.94	41.5
5	T1	391	0.0	391	0.0	0.514	11.0	LOS A	4.8	33.3	0.90	0.80	0.94	33.2
6	R2	1	0.0	1	0.0	0.514	15.7	LOS B	4.8	33.3	0.90	0.80	0.94	40.9
Appro	bach	406	0.0	406	0.0	0.514	11.0	LOS A	4.8	33.3	0.90	0.80	0.94	33.7
North	: Quee	n Street												
7	L2	1	0.0	1	0.0	0.283	23.9	LOS B	3.6	24.9	1.00	0.72	1.00	26.4
8	T1	14	0.0	14	0.0	0.283	22.7	LOS B	3.6	24.9	1.00	0.72	1.00	27.7
9	R2	123	0.0	123	0.0	0.283	26.9	LOS B	3.6	24.9	1.00	0.72	1.00	17.1
Appro	bach	138	0.0	138	0.0	0.283	26.5	LOS B	3.6	24.9	1.00	0.72	1.00	18.5
West	Pome	roy Street												
10	L2	160	0.0	160	0.0	0.720	3.7	LOS A	12.1	84.9	0.25	0.51	0.25	42.4
11	T1	453	0.0	453	0.0	0.720	4.3	LOS A	12.1	84.9	0.25	0.51	0.25	45.6
12	R2	573	0.0	573	0.0	0.720	9.0	LOS A	12.1	84.9	0.25	0.51	0.25	46.3
Appro	bach	1185	0.0	1185	0.0	0.720	6.5	LOS A	12.1	84.9	0.25	0.51	0.25	45.5
All Ve	hicles	2416	0.0	2416	0.0	0.999	22.1	LOS B	33.2	232.1	0.61	0.97	1.32	26.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BARKER RYAN STEWART | Processed: Thursday, 4 February 2021 12:21:19 PM

Project: \\brs.loca\\Data\Business\Norwest\Synergy\Projects\SY16\SY160252\Planning & Engineering\BRS Documentation\Reports\Sidra 2021 \Pomeroy Network PM 2021.sip8

Appendix E Parking Assessment

Traffic and Parking Assessment

TTPP REF: 20292

Date: 23 October 2020

Development Proposal

A planning proposal is to be lodged with City of Canada Bay Council seeking approval to increase residential densities and introduce a mixed-use hub, which consists of about 1,400 residential units and 2,800m² of retail floor space.

The indicative development yield is provided in Table 1 with the indicative precinct plan shown in Figure 1.

	Site Area (m ²)	GFA (m²)	FSR	Residential GFA (m ²)	Avg Apartment Size (m²)	No. of Res Units	Retail GFA (m ²)
Block 1	3,413	8,874	2.6	8,874	75	101	0
Block 2	3,236	8,414	2.6	8,414	75	95	0
Block 3	3,460	8,996	2.6	8,996	75	102	0
Block 4	2,811	10,079	3.6	8,817	75	97	1,262
Block 5	3,414	12,192	3.6	12,192	75	138	0
Block 6	4,954	15,810	3.2	15,810	75	179	0
Block 7	2,785	10,026	3.6	8,772	75	99	1,254
Block 8	3,541	12,748	3.6	12,748	75	144	0
Block 9	814	2,921	3.6	2,640	75	29	281
Block 10	1,017	3,624	3.6	3,624	75	41	0
Block 11	5,706	11,412	2	11,412	85	114	0
Block 12	2,709	6,150	2.3	6,150	85	62	0
Block 13	6,070	10,926	1.8	10,926	85	109	0
Block 14	4,371	9,525	2.2	9,525	85	95	0
Total	48,301	131,697	2.7	128,900	78	1,405	2,797

Table 1: Proposed Development Yield

Figure 1: Indicative Precinct Plan

Figure 2: Indicative Precinct Plan (Block Location)

Parking Assessment

The parking requirement has been assessed based on the rates set out in City of Canada Bay Development Control Plan: Special Precincts – Concord West Precinct (Concord West DCP).

Concord West DCP stipulates the following maximum car parking provision within Concord West Precinct:

- Residential
 - 0.3 spaces per studio unit
 - 0.5 spaces per 1 bedroom apartment
 - 0.9 spaces per 2 bedroom apartment
 - 1.2 spaces per 3 bedroom apartment
 - 1 visitor space per 10 apartments
- Retail
 - 1 space per 70m² GFA

In addition, the car parking provision should not exceed individual maximums provided per sub-precinct shown in Figure 3.

Figure 3: Concord West DCP Maximum Car Parking Provision per Sub-precinct

Source: City of Canada Bay Council DCP Special Precincts

Based on the above, Block 6 and Block 9 are within sub-precincts 2 and 3. Therefore, the maximum allowed car parking provision is 86 spaces for Block 6 and 20 spaces for Block 9.

The proposed apartment mix not yet known at this stage. However, it is noted that the draft *Canada Bay Local Strategic Planning Statement (LSPS)* seeks to amend the Council Local Environmental Plan 2013 (LEP). The proposed changes include introduction of a new clause to increase diversity of apartment sizes. The proposal requires that residential flat buildings and mixed use developments that include at least 10 dwellings to provide the following:

- at least 20% of the dwellings as self-contained studio or one-bedroom dwellings, and
- at least 20% of the dwellings as three or more bedroom dwellings.

To estimate the indicative unit mix of the proposed development, it is assumed that 20% of all dwellings will be one-bedroom units and 20% will be three-bedroom units.

Table 2 shows the car parking requirement of the proposed development based on the Concord West DCP rates.

Table 2: Concord West D	CP Parking	Requirement
-------------------------	------------	-------------

	No. of	Retail GFA (m ²)	Assumed Unit Mix Maximum Parking Rate					Maxir	Maximum Allowable Parking				
	Res Units	(m²)	1-bed	2-bed	3-bed	Residential	Retail	Resident	Visitor	Retail	Total		
Block 1	101	0	20	61	20			89	10	0	99		
Block 2	95	0	19	57	19			84	10	0	94		
Block 3	102	0	20	61	20			90	10	0	100		
Block 4	97	1,262	19	58	19			85	10	18	113		
Block 5	138	0	28	83	28	0.3 spaces per studio + 0.5 spaces per 1 bedroom	1 per 70m ²	121	14	0	135		
Block 6	179	0	36	107	36			158*	18*	0*	86*		
Block 7	99	1,254	20	59	20	apartment + 0.9 spaces		87	10	18	115		
Block 8	144	0	29	86	29	+ 1.2 spaces per 3	GFA	127	14	0	141		
Block 9	29	281	6	17	6	bedroom apartments +		26*	3*	4*	20*		
Block 10	41	0	8	25	8	0.1 Visitor space unit		36	4	0	40		
Block 11	114	0	23	68	23			100	11	0	111		
Block 12	62	0	12	37	12	12 22 19		55	6	0	61		
Block 13	109	0	22	65	22			96	11	0	107		
Block 14	95	0	19	57	19			84	10	0	94		
Total	1,405	2,797	281	843	281			1,236*	141*	40*	1,315*		

*Total parking provision for Block 6 and 9 should not exceed 86 car spaces and 20 car spaces, respectively.